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Abstract
Wepresent aWork Stealing scheduling algorithm that provably avoidsmost synchronization overheads by keeping processors’
deques entirely private by default and only exposing work when requested by thieves. This is the first paper that obtains
bounds on the synchronization overheads that are (essentially) independent of the total amount of work, thus corresponding
to a great improvement, in both algorithm design and theory, over state-of-the-art Work Stealing algorithms. Consider any
computation with work T1 and critical-path length T∞ executed by P processors using our scheduler. Our analysis shows

that the expected execution time is O
(
T1
P + T∞

)
, and the expected synchronization overheads incurred during the execution

are at most O ((CCAS + CMFence) PT∞), where CCAS and CMFence, respectively, denote the maximum cost of executing a
Compare-And-Swap instruction and a Memory Fence instruction.

Keywords Work stealing · Synchronization overheads · Upper bounds · Scheduling

1 Introduction

InWork Stealing, each worker (usually referred to as proces-
sor) owns a double-ended queue (deque) of threads ready to
execute. This deque is locally manipulated as a stack, similar
to a sequential execution: Processors push and pop threads
from the bottom side of their dequewhen, respectively, a new
thread is spawned and the execution of the current thread
concludes. Additionally, whenever a pop operation finds the
local deque empty, the processor becomes a thief and starts
targeting other processors—called its victims—uniformly at
random, with the purpose of stealing a thread from the top
of their deques.

Work Stealing is a provably efficient algorithm for
scheduling multithreaded computations (Blumofe & Leiser-
son, 1999). However, as shown by Attiya et al., (2011), due
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to the concurrent nature of processors’ deques, the use of
appropriate synchronization mechanisms in these data struc-
tures is required for correctness. Consequently, even when
processors are operating locally on their deques, they incur
expensive synchronization overheads that, in most cases, are
unnecessary.

The first provably efficient Work Stealing algorithm, pro-
posed in Blumofe & Leiserson, (1999), assumed that all
steal attempts targeting each deque were serialized, and only
ensured the success of at most one such attempt per time
step. The idea was materialized in Cilk (Blumofe et al.,
1996) via a blocking synchronization protocol named THE.
Despite being extremely efficient, Frigo et al. found that the
overheads introduced by the THE protocol easily account
for more than half of Cilk’s total execution time (Frigo
et al., 1998). Subsequent work mitigated part of these over-
heads by replacing the THE protocol with a non-blocking
one that resorts to Compare-And-Swap (CAS) and Memory
Fence (MFence) instructions (Arora et al., 2001; Blumofe &
Papadopoulos, 1998), which are atomic instructions that are
used to achieve synchronization between processors, in this
case being used to synchronize concurrent deque accesses by
processors. Later, Morrison et al. tuned Cilk by removing a
single MFence instruction (one that was executed whenever
a processor tried to take work from its deque) and found that
this single MFence could account for as much as 25% of
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the total execution time (Morrison et al., 2014). Unfortu-
nately, as proved in Attiya et al., (2011), it is impossible to
eliminate all synchronization (e.g., the MFence instruction
mentioned above) from the implementation of any concurrent
data structure that could possibly be used as a work-queue by
a Work Stealing algorithm, while maintaining correctness.
Indirectly, this result implies the impossibility of eliminat-
ing all synchronization from Work Stealing algorithms that
use any fully concurrent data structure as processor’s work-
queues.

Various proposals have been made with the goal of elimi-
nating synchronization for local deque accesses, by making
deques partly or even entirely private (Acar et al., 2013;
Dinan et al., 2009; Hiraishi et al., 2009; Lifflander et al.,
2012; Morrison et al., 2014; Tzannes et al., 2011; van Dijk
and van de Pol, 2014). The elimination of synchronization for
local deque accesses, however, raises a new problem. Since
synchronization is required to guarantee correctness, when
a processor p spawns a thread � and pushes � (locally) to
its work-queue, � cannot safely be stolen from p by other
processors, at least until p issues some synchronization oper-
ation. So, when should a busy processor use synchronization
to permit load balancing? The subtlety of this question is
evidenced by the inexistence of any algorithm that provably
avoids most synchronization overheads while maintaining
provably good performance. On the one hand, if a proces-
sor exposes work too eagerly, then it still incurs unnecessary
synchronization overheads (Acar et al., 2013; Dinan et al.,
2008, 2009; Lifflander et al., 2012; Tzannes et al., 2011; van
Dijk & van de Pol, 2014). On the other hand, if a processor
barely exposes any work, then load balancing opportunities
become limited, thus potentially dropping the asymptotically
optimal runtime guarantees of Work Stealing (Hiraishi et al.,
2009; Morrison et al., 2014; van Dijk & van de Pol, 2014).
To address this problem optimally, our algorithm follows a
lazy approach: (1) A processor p only uses synchronization
to expose work when a thief directly asks p for work, and
(2) p only exposes a single unit of work (i.e., a single thread)
for each time it is asked to expose work.

1.1 Contributions

In this paper,wepresentLow-CostWorkStealing, a variant of
theWorkStealing algorithm that uses split deques to provably
avoid most synchronization overheads, while maintaining
an asymptotically optimal expected runtime. The theoretical
significance of our contributions is highlighted, for instance,
by the tight bounds we obtain on the synchronization over-
heads incurred by our algorithm. Our bounds are essentially
independent from the computation’s total amount of work,
contrasting with previous work. From an algorithm design
perspective, Low-Cost Work Stealing greatly improves over
prior Work Stealing schedulers as it shows how to optimally

use synchronization to permit provably efficient load balanc-
ing. Four of the distinctive features of our algorithm are:

1. Busy processors only expose work to be stolen after being
targeted byone ormore steal attempts. This allows proces-
sors towork locally on theirwork-queuewithout requiring
any synchronization, imposing it only when load balanc-
ing may be needed.

2. Work exposure requests are attended in constant time.
This is crucial to keep the algorithm’s execution time
bounds a constant factor away from optimal. The require-
ment may be achieved by periodically checking for
requests or by implementing an asynchronous notifica-
tion mechanism. For the sake of simplicity, we only focus
on the former.

3. Processors only expose one thread of their local work at
a time, contrasting with prior approaches. Consequently,
synchronization for local operation can bemostly avoided
when little load balancing is needed.

4. All interactions between processors are completely asyn-
chronous, making our algorithm viable for multipro-
grammed environments.

As we will see, our analysis shows that for a P-processor
execution of a computation with total work T1 and critical-
path length (i.e., span) T∞, the expected execution time of

Low-Cost Work Stealing is at most O
(
T1
P + T∞

)
, and the

expected synchronization overheads incurred by the algo-
rithm are at most O ((CCAS + CMFence) PT∞), where CCAS

and CMFence, respectively, denote the synchronization costs
incurred by the execution of a CAS andMFence instructions.
These bounds are tight and imply that for several classes of
computations our algorithm reduces the use of synchroniza-
tion by an almost exponential factor when compared with
prior provably efficient Work Stealing algorithms.

2 Preliminaries

Like in much previous work (Acar et al., 2002, 2013;
Agrawal et al., 2007, 2008;Arora et al., 1998, 2001;Blumofe
& Leiserson, 1999; Muller & Acar, 2016; Tchiboukdjian
et al., 2010), we model a computation as a dag (i.e., a direct
acyclic graph) G = (V , E), where each node v ∈ V corre-
sponds to an instruction, and each edge (μ1, μ2) ∈ E denotes
an ordering between two instructions (meaning μ2 can only
be executed after μ1). Nodes with in-degree of 0 are referred
to as roots, while nodes with out-degree of 0 are called sinks.
Equivalently to Arora et al., (2001), we make two assump-
tions related to the structure of computations. Let G denote
a computation’s dag:
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(a) (b)

Fig. 1 The Split Deque built from an array of nodes (named entries),
and featuring a state composed of 3 variables: age comprising fields
top, that points to the split deque’s topmost node, and tag, to ensure
correctness (see Sect. 3.3); official bottom points to node below the

bottommost one of the split deque’s public part, and, lastly, private
bottom points to the empty slot below the split deque’s bottommost
node

1. there exists only one root and one sink in G;
2. the out-degree of any nodewithinG is at most two (mean-

ing that each instruction can spawn at most one thread).

The total number of nodes within a dag is expressed by
T1 and the length of a longest directed path (i.e., the critical-
path length) by T∞. A node is ready if all its ancestors have
been executed, implying that all the ordering constraints of
E are satisfied. When a node becomes ready, we say that
it was enabled; to ensure correctness only ready nodes can
be executed. The assignment of a node μ to a processor p
means that μ will be the next node p executes. Finally, a
computation’s execution can be partitioned into discrete time
steps, such that at each step, every processor executes an
instruction.

3 Low-Cost Work Stealing

In Low-Cost Work Stealing, each processor owns a Lock-
Free split deque, instead of a typical concurrent deque. A
split deque (illustrated in Fig. 1) is simply a deque that is
split into two parts: a private part and a public part. The
public part lies in the top of the split deque whereas the
private corresponds to the rest of the split deque. To avoid
synchronization for local operations, only the owner of a split
deque is allowed to access its private part. Furthermore, by
default busy processors operate on the private part of their
split deque, pushing and popping ready nodes as necessary.
In fact, a busy processor only attempts to fetch work from the
public part of its split deque if the private part is empty. In
such situation, if the processor’s attempt succeeds (i.e., if the
public part of the processor’s split deque is not empty), the
obtained node becomes the processor’s new assigned node.
However, if the public part of the processor’s split deque
is also empty, the processor becomes a thief and begins a
stealing phase. During stealing phases, thieves target victims

uniformly at random and attempt to steal work from the top
of their split deques. To keep the private part of split deques
entirely private, steal attempts are only allowed to access the
public part. Thus, when a thief attempts to steal work from a
victim’s split deque whose public part is empty (illustrated in
Fig. 1a), the steal attempt simply fails and the thief does not
obtain work. In that case, the thief then updates a victim’s
flag (referred to as the targeted flag) to (asynchronously)
notify the victim that the public part of its split deque is
empty (more on this in Sect. 3.2). When the owner of the
split deque realizes it was notified (by checking the value of
its targeted flag), it tries to transfer a node from the private
part of its split deque to the public part. If the private part
is not empty, then a node is transferred, in which case we
say that the transferred node became stealable (illustrated in
Fig. 1b).

3.1 The lock-free Split Deque

Wenowpresent the specificationof a split dequeobject, along
with its associated relaxed semantics. Being the behavior of
split deques similar to the behavior of concurrent deques,
the split deque’s relaxed semantics are comparable to the
relaxed deque semantics presented in Arora et al., (2001).
A split deque object meeting the relaxed semantics supports
five methods:

push—Pushes a node into the bottom of the split deque’s
private part.

pop—Removes and returns a node from the bottom of the
split deque’s private part, if that part is not empty. Other-
wise, returns the special value race.

updateBottom—Transfers the topmost node from the pri-
vate part of the split deque into the bottom of the public
part, and does not return a value. The invocation has no
effect if the private part of the split deque is empty.
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popBottom—Removes and returns the bottom-most node
from the public part of the split deque. If this part of
the split deque is empty, the invocation has no effect and
empty is returned.

popTop—Attempts to remove and return the topmost node
from the public part of the split deque. If the public part is
empty, the invocation has no effect and the value empty
is returned. If the invocation aborts, it has no effect and
the value abort is returned.

A split deque implementation is constant-time iff any
invocation to each of these methods takes at most a con-
stant number of steps to return. Say that a set of invocations
to a split deque’s methods meets the relaxed semantics iff
there is a set of linearization times for the corresponding
non-aborting invocations such that:

1. Every non-aborting invocation’s linearization time lies
within the beginning and completion times of the respec-
tive invocation;

2. No linearization times associated with distinct non-
aborting invocations coincide;

3. The return values for the non-aborting invocations are
consistent with a serial execution of the methods in the
order given by the linearization times of the corresponding
non-aborting invocations; and

4. For each aborted popTop invocation x to a split deque
d, there exists another invocation removing the topmost
item from d whose linearization time falls between the
beginning and completion times of invocation x .

3.2 The Low-CostWork Stealing algorithm

Algorithm 1 depicts the specification of the Low-Cost Work
Stealing algorithm. Each processor owns a split deque that
it uses to store its attached nodes and, additionally, owns
a targeted flag that stores a Boolean value. This flag is
used to implement an asynchronous notification mechanism
that allows thieves to request their victims to expose work,
allowing it to be stolen. Even though, in practice, the noti-
fication mechanism of our algorithm can be implemented
using signals, to perform a correct analysis of the algorithm’s
synchronization overheads all the possible sources of such
overheads must be explicit, for which reason we chose to
embed a simple notification mechanism into the algorithm’s
specification. Although the targeted flag of each proces-
sor can be simultaneously accessed by multiple processors,
to ensure the algorithm’s correctness it suffices to guaran-
tee that busy processors read an up-to-date value of their
targeted flag, an operation not requiring any synchroniza-
tion (see Sewell et al., 2010).

Algorithm 1 Low-Cost Work Stealing algorithm.

1: procedure scheduler
2: while computation not terminated do
3: if sel f .targeted then
4: sel f .spdeque.updateBottom( )
5: sel f .targeted ← false

6: end if
7: if validNode(assigned) then
8: enabled ← execute(assigned)
9: if length(enabled) > 0 then
10: assigned ← enabled [0]
11: if length(enabled) = 2 then
12: sel f .spdeque.push(enabled [1])
13: end if
14: else
15: assigned ← sel f .spdeque.pop( )
16: if assigned = race then
17: assigned ← sel f .spdeque.popBottom( )
18: end if
19: end if
20: else
21: sel f .workMigration( )
22: end if
23: end while
24: end procedure

25: procedure workMigration

26: victim ← uniformlyRandomProcessor( )
27: assigned ← victim.spdeque.popTop( )
28: if assigned = empty then
29: victim.targeted ← true

30: end if
31: end procedure

32: function validNode(node)
33: return node �= empty and node �= abort and node �=

none

34: end function

Before a computation’s execution begins, every proces-
sor sets its assigned node to none and its targeted flag to
false. To start the execution, one of the processors gets the
root node assigned.

As we will see, the behavior of Low-Cost Work Stealing
is similar to the original Work Stealing algorithm. Consider
some processor p working on a computation scheduled by
Low-Cost Work Stealing, and some iteration of the schedul-
ing loop that p executes (corresponding to lines 2 to 23 of
Algorithm 1). First, p reads the value of its targeted flag to
check if it has been notified by some thief. If p’s targeted
flag is set to true (i.e., if p was notified), the processor tries
to make a node stealable, by invoking updateBottom to
its split deque. After that, and regardless of that invocation’s
outcome, p resets its targeted flag back to false. The sub-
sequent behavior of p depends on whether it has an assigned
node.
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– If p has an assigned node, p executes the node. From this
execution, either zero, one or two nodes can be enabled.

Zero nodes enabled: The processor tries to fetch the bot-
tommost node stored in its split deque. To that end, p first
tries to fetch a node from the bottom of its split deque’s
private part (line 15). If p finds that part empty, it then
tries to fetch a node from the public part (line 17). If
this part is also empty, p becomes a thief and starts a
work stealing phase. On the other hand, if p successfully
fetched a node from any of the parts of its split deque,
then the returned node becomes p’s new assigned node.

One node enabled: The enabled node becomes p’s new
assigned node (line 10).

Two nodes enabled: One of the enabled nodes becomes
p’s new assigned node, while the other is pushed into the
bottom of the private part of p’s split deque (line 12).

– If p does not have an assigned node, it is searching for
work. In this situation, the processor first targets, uni-
formly at random, a victim processor and then attempts
to steal work from the public part of the victim’s split
deque (lines 26 and 27). If the attempt is successful,
the stolen node becomes p’s new assigned node. If the
attempt aborts, p simply gives up on the steal attempt.
For last, if p finds the public part of the victim’s split
deque empty it sets the victim’s targeted flag to true

(line 29), notifying the victim that it found the public part
of the victim’s split deque empty.

3.3 A Split Deque implementation

Algorithm 2 depicts a possible implementation of the lock-
free split deque, based on the deque’s implementation given
in Arora et al., (2001). As illustrated in Fig. 1, each split
deque object has four instance variables:

entries—an array of ready nodes.
privateBottom—the index below the bottommost node of

the split deque.
officialBottom—the index below the bottommost node of the

split deque’s public part.
age—composed of two fields: top, the index of the top node,

and tag,which is only used to ensure correction (avoiding
the ABA problem).

Algorithm 2 The Split Deque implementation.
privateBottom ← 0 � private field
entries ← {} � private read-write, public read-only
of f icial Bottom ← 0 � private read-write, public read-only
age ← {0, 0} � public field

1: procedure push(node)
2: pBot ← sel f .privateBottom
3: sel f .entries[pBot] ← node
4: sel f .privateBottom ← pBot + 1
5: end procedure

6: procedure pop
7: pBot ← sel f .privateBottom
8: if pBot = sel f .of f icial Bottom then return race

9: end if
10: pBot ← pBot − 1
11: node ← sel f .entries[pBot]
12: sel f .privateBottom ← pBot
13: return node
14: end procedure

15: procedure popTop
16: old Age ← sel f .age
17: oldBottom ← sel f .of f icial Bottom
18: if oldBottom ≤ old Age.top then return empty

19: end if
20: node ← sel f .entries[old Age.top]
21: newAge ← old Age
22: newAge.top ← newAge.top + 1
23: if CAS(age, old Age, newAge) = success then
24: return node
25: end if
26: return abort

27: end procedure

28: procedure updateBottom
29: pBot ← sel f .privateBottom
30: oBot ← sel f .of f icial Bottom
31: if pBot > oBot then oBot ← oBot + 1
32: end if
33: sel f .of f icial Bottom ← oBot
34: end procedure

35: procedure popBottom
36: oBot ← sel f .of f icial Bottom
37: if oBot = 0 then return empty

38: end if
39: oBot ← oBot − 1
40: sel f .of f icial Bottom ← oBot
41: node ← sel f .entries[oBot]
42: old Age ← age
43: if oBot > old Age.top then return node
44: end if
45: sel f .of f icial Bottom ← 0
46: sel f .privateBottom ← 0
47: newAge.top ← 0
48: newAge.tag ← old Age.tag + 1
49: if oBot = old Age.top then
50: if CAS(age, old Age, newAge) = success then
51: return node
52: end if
53: end if
54: sel f .age ← newAge
55: return empty

56: end procedure
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We say that a set of invocations is good if and only if the
methods push, pop, updateBottom and popBottom are
never invoked concurrently. For Low-Cost Work Stealing, as
only the owner of each split deque can invoke these methods,
it is easy to deduce that all sets of invocations issued by the
algorithm are good. Furthermore, we claim that the imple-
mentation depicted inAlgorithm2 is constant-time andmeets
the relaxed semantics (defined in Sect. 3.1) on any good set
of invocations. However, even though all methods are com-
posed by a small number of instructions and none includes a
loop, proving this claim is not a straightforward task because
all possible execution interleavings have to be considered.
Moreover, as the main focus of this study is not related to
programs’ verification, the proof of this claim falls out of the
scope of this paper. Yet, we remark that the proposed imple-
mentation is a simple extension of the deque implementation
presented in Arora et al., (2001), which has been proven in
Blumofe and Leiserson (1999) to be a correct implemen-
tation, meeting the relaxed deque semantics on any set of
invocations made by the Work Stealing algorithm. For this
reason, throughout this paper we assume that for any set of
invocations issued by theLow-CostWorkStealing algorithm,
the relaxed semantics is always satisfied.

Lemma 1 No invocation to push requires anMFence instruc-
tion.

Proof Since the pushmethod operates only once over a sin-
gle publicly accessible field (entries) of the split deque’s
state, no MFence instructions are required. �	
Lemma 2 No invocation to pop requires anMFence instruc-
tion.

Proof Any invocation to the popmethod only reads from two
publicly accessible fields of the split deque’s state, namely
officialBottom (line 8) and entries (line 12). However, due to
a data dependency, no re-ordering between these read opera-
tionsmay occur, and so, noMFence instructions are required.

�	
The dag of a computation is dynamically unfolded during

its execution. If the execution of a node u enables another
node u′, then (u, u′) is an enabling edge and refer to node
u as the designated parent of u′. Refer to the tree formed
by the enabling edges of a particular execution of a dag by
enabling tree, and denote the depth of a node u within this
tree by d (u). Define the weight of u as w (u) = T∞ − d (u).
Similar to Arora et al., (2001), our analysis is made in an a
posteriori fashion, allowing us to refer to the enabling tree
generated by a computation’s execution.

The next lemma states the standard structural property of
deques.

Lemma 3 (Structural Lemma for split deques)Let v1, . . . , vk
denote the nodes stored in some processor p’s split deque,

ordered from the bottom of the split deque to the top, at some
point in the linearized execution of Low-Cost Work Stealing.
Moreover, let v0 denote p’s assigned node (if any), and for
i = 0, . . . , k let ui denote the designated parent of vi in
the enabling tree. Then, for i = 1, . . . , k, ui is an ances-
tor of ui−1 in the enabling tree, and although v0 and v1
may have the same designated parent (i.e., u0 = u1), for
i = 2, 3, . . . , k, ui−1 �= ui (i.e., the ancestor relationship is
proper).

Corollary 1 Let v1, . . . , vk denote the nodes stored in some
processor p’s split deque, ordered from the bottom of the
split deque to the top, at some moment during the execu-
tion of Low-Cost Work Stealing. Moreover, let v0 denote p’s
assigned node (if any). Then, we have w (v0) ≤ w (v1) <

· · · < w (vk−1) < w (vk).

4 Analysis

In this section, we obtain bounds on the expected execution
time of computations using Low-Cost Work Stealing and
on the expected synchronization overheads incurred by the
scheduler. The analysis we make follows the same overall
idea as the one given in Arora et al., (2001). For the sake of
readability, most of the proofs are deferred to “Appendix A.”
We now introduce a fewmore definitions needed for the anal-
ysis.

Define a scheduling iteration as a sequence of instructions
executed by a processor corresponding to a particular itera-
tion of the scheduling loop (lines 2 to 23 of Algorithm 1).
Thus, the full sequence of instructions executed by each pro-
cessor during a computation’s execution can be partitioned
into scheduling iterations.As inArora et al., (2001),we intro-
duce the concept of a milestone: An instruction within the
sequence executed by a processor is a milestone iff it corre-
sponds to a node’s execution (line 8) or to the return of a call
to workMigration (line 31). Taking into account the defi-
nition of a scheduling iteration, it is clear that any scheduling
iteration of the algorithm includes a milestone. Refer to iter-
ations whose milestone corresponds to a node’s execution as
busy iterations, and refer to the remainder as idle iterations.
As one might note, if a processor has an assigned node at the
beginning of an iteration’s execution, the iteration is a busy
one, and, otherwise, the iteration is an idle one. By observing
the scheduling loop (lines 2 to 23 of Algorithm 1), and taking
into account that the split deque’s implementation is constant
time, it is clear that any scheduling iteration is composed of
a constant number of instructions. It then follows that any
processor executes at most a constant number of instructions
between two consecutive milestones. Throughout the analy-
sis, let C denote a constant that is large enough to guarantee
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that any sequence of instructions executed by a processor
with length at least C includes a milestone.

We can now bound the execution time of a computation
depending on the number of idle iterations that take place dur-
ing that computation’s execution. The proof of the following
result is a trivial variant of Arora et al., (2001), Lemma 5 but
considering the Low-Cost Work Stealing algorithm.

Lemma 4 Consider any computationwithwork T1 being exe-
cuted by P processors, under Low-Cost Work Stealing. The

execution time is O
(
T1
P + I

P

)
, where I denotes the number

of idle iterations executed by processors.

As we will see, the following two results are key, as they
show that the synchronization overheads incurred by Low-
Cost Work Stealing (essentially) only depend on the number
of idle iterations that take place during a computation’s exe-
cution.

Lemma 5 Consider a processor p executing a busy iteration
such that p’s targeted flag is set to falsewhen p checks it at
the beginning of the iteration. If the execution of p’s assigned
node enables one or more nodes or if the private part of
p’s split deque is not empty, then no MFence instruction is
required during the execution of the iteration.

Proof Consider the Low-Cost Work Stealing algorithm,
depicted in Algorithm 1. The first action processor p takes
for the execution of that iteration is checking the value of its
targeted flag (line 3). Since, by the statement of this lemma,
p’s targeted flag is set to false at the moment when p
checks the flag’s value, p does not enter the then branch of
the if statement. Moreover, as a consequence of the condi-
tional statement of line 3, there is a control dependency that
does not allow the instructions succeeding the conditional
expression to be reordered with the evaluation of the condi-
tion, implying no MFence instruction is required until this
point.

After that, p checks if it has an assigned node (line 7).
Again, since the next action p takes depends on its currently
assigned node, there is a control dependency from the instruc-
tionwhere p checks if it has a currently assigned node to both
branches of the if statement. Thus, no instruction reordering
between the evaluationof the condition and anyof the instruc-
tions succeeding that evaluation can be made, implying no
MFence instruction is required until here.

Because we assumed p was executing a busy iteration, by
the definition of a busy iteration, p must have an assigned
node. Hence, p executes its assigned node. Since the next
action p takes (line 9) depends on the outcome of that node’s
execution, there is a control dependency between the execu-
tion of p’s assigned node and the execution of the sequence of
instructions corresponding to each of the possible outcomes.
Hence, no instruction reordering can be made, implying no
MFence instruction is necessary until this point.

From that node’s execution, three outcomes are possible:

0 nodes enabled In this case, p invokes the pop method on
its own split deque (line 15). By Lemma 2, the invocation
does not require the execution of a MFence instruction.
Furthermore, the next instruction (line 16) has a data
dependency on the value of p’s assigned node, for which
reason it cannot be reordered with the invocation of the
pop method and so no MFence instruction is required.
Since we have assumed that the private part of p’s split
deque was not empty, it is trivial to conclude that the pop
invocation returns a node, which immediately becomes
p’s new assigned node. Thus, after having a new node
assigned p takes no further action during the iteration,
meaning noMFence instruction was required for the exe-
cution of the iteration in this situation.

1 node enabled In this case the enabled node becomes p’s
new assigned node (line 10). Next, p checks the number
of nodes that were enabled. The assignment of one of
the enabled nodes and the instruction where p checks the
number of nodes enabled can be reordered. Fortunately,
because enabled is a local variable (line 8) that is solely
accessed by p, there is no harm for a parallel execution if
the instructions are reordered and so no MFence instruc-
tion is required for this case as well. Because p enabled a
single node it takes no further action during the iteration,
implying the lemma holds in this situation as well.

2 nodes enabled Finally, for this case one of the enabled
nodes becomes p’s new assigned node (line 10). Using
the same reasoning as for the case where a single node
was enabled, we conclude that no MFence instruction is
required at least until the evaluation of the conditional
statement of line 11. Because p enabled two nodes, p
enters the then branch of the conditional statement and
pushes the node it did not assign into the bottomof its split
deque, by invoking the pushmethod (line 12). Since there
is a control dependency between the execution of this
instruction and the evaluation of the condition, no instruc-
tion reordering is allowed. Thus, no MFence instruction
is required between these two instructions.
Finally, Lemma 1 states that an invocation to the push

method does not require a MFence instruction to be exe-
cuted. Because after the invocation p takes no further
action during the iteration, we deduce the lemma holds,
concluding its proof. �	

The following lemma is a consequence of Lemma 5 and
states that the number of CAS and MFence instructions
executed during a computation’s execution using Low-Cost
Work Stealing only depends on the number of idle iterations
and processors.
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Lemma 6 Consider any computation being executed by the
Low-Cost Work Stealing algorithm, using P processors. The
number of Compare-And-Swap (CAS) and Memory Fence
(MFence) instructions executed by processors during the
computation’s execution is at most O (I + P), where I
denotes the total number of idle iterations executed by pro-
cessors.

Proof By observing Algorithms 1 and 2, it is easy to see that
only invocations to popBottom or popTopmethods can lead
to the execution ofCAS instructions. Furthermore, both these
methods are invoked at most once per scheduling iteration,
and, for both, at most one CAS instruction is executed per
invocation. Since processors only invoke the popTopmethod
when executing idle iterations, the number of CAS instruc-
tions caused by invocations to popTop is O (I ). On the other
hand, processors only invoke the popBottom method dur-
ing busy iterations where the private part of their split deque
is empty and the execution of their currently assigned node
does not enable any new nodes. Let p denote some proces-
sor executing one such iteration. From p’s invocation to the
popBottom method two outcomes are possible:

A node is returned In this case the public part of p’s split
deque was not empty implying p had previously trans-
ferred a node from the private part of its split deque to the
public part. ByobservingAlgorithm1, it is easy to deduce
that p only makes these node transfers if some thief
had previously set p’s targeted flag to true. Moreover,
because after transferring the node p immediately sets
its targeted flag back to false, the number of times p
makes such node transfers is at most the number of times
it is targeted by a steal attempt. Taking into account that
processors only make steal attempts during the execution
of idle iterations, and make exactly one steal attempt for
each such iteration, exactly I steal attempts take place
during a computation’s execution. As such, the number
of CAS instructions executed in situations like this one
is at most O (I ).

Empty is returned In this case p will not have an assigned
node at the end of the scheduling iteration’s execution.
Thus, after p finishes executing the iteration, two scenar-
ios may occur:

p executes an idle iteration For this case, we can create
a mapping from idle iterations to each busy iteration
that precedes an idle iteration, implying there can be
at most O (I ) such iterations. With this, it is triv-
ial to conclude that the number of CAS instructions
executed by Low-Cost Work Stealing for situations
equivalent to this one is at most O (I ).

The execution terminates Since there are exactly P
processors, at most P scheduling iterations can
precede the end of a computation’s execution. Con-

sequently, the number of CAS instructions executed
for scenarios equivalent to this one is at most O (P).

Summingup all the possible scenarios, the number ofCAS
instructions executed by Low-Cost Work Stealing is at most
O (I + P).

We now turn to the number of MFence instructions exe-
cuted during a computation’s execution. To that end, we first
bound the number of scheduling iterations that can contain
MFence instructions. Consider any scheduling iteration s
during a computation’s execution, and let p denote the pro-
cessor that executed the iteration. Iteration s was either an
idle or a busy iteration.

s was an idle iteration By definition, at most I iterations are
idle, implying there are O (I ) such iterations that could
contain MFence instructions.

s was a busy iterationWhen p checks its targeted flag, one
of the two following situations arises:

targeted is TRUE By observing Algorithm 1 we conclude
that such a situation can only occur if another processor
q has set p’s targeted to true, which can only occur
if q was executing an idle iteration. After executing the
conditional statement, p resets its targeted flag back to
false. Thus, the total number of busy iterations where a
processor has its flag set to targeted is at most I , because
each such iteration can be mapped by an idle iteration.
Consequently, the number of iterations similar to this one
is at most O (I ).

targeted is FALSE As p is executing a busy iteration, it
will execute the node it has assigned. From that node’s
execution, either 0, 1 or 2 other nodes can be enabled.

More than 0 nodes are enabled Lemma 5 implies that
no MFence instruction is executed in this case.

0 nodes are enabled In this case, p cannot immediately
assign a new node, because it did not enable any. By
Algorithm 1, p will then invoke the pop method to
its own split deque. With this, one of two possible
situations arises:
split deque’s private part is not empty As a conse-

quence of Lemma 5, no MFence instruction is
executed in this case.

split deque’s private part is empty In this case,
by observing Algorithm 2 we conclude that the
invocation returns the special valuerace, imply-
ing p will make an invocation to popBottom

still during that same iteration. From that invo-
cation, two outcomes are possible:
A node is returned In this situation, p assigns

the node. By observing Algorithm 1 it is
trivial to conclude that this scenario only
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arises if some processor previously set p’s
targeted flag to true. As a consequence, p
transferred a node from the private part of its
split deque to the public part. Again, using
the same reasoning as for the case where p’s
targeted flag is set totrue,we conclude the
number of such iterations is at most O (I ).

EMPTY is returned After p finishes execut-
ing the current scheduling iteration s, two
scenariosmay occur: p executes an idle iter-
ation: It is easy to deduce that we can create
a mapping from idle iterations to each iter-
ation satisfying the same conditions as s.
Thus, there can be at most O (I ) such itera-
tions.The execution terminates: As there are
exactly P processors, at most P scheduling
iterations can precede the end of a computa-
tion’s execution. Consequently, there are at
most P scheduling iteration similar to s.

Now, we sum up all the scheduling iterations that may
contain MFence instructions. Accounting with all possible
scenarios, it follows that at most O (I + P) scheduling itera-
tionsmay containMFence instructions. Since any scheduling
iteration is composed by at most C instructions, at most C
MFence instructions can be executed per iteration, implying
the number of MFence instructions executed during a com-
putation’s execution is at most O (I + P). �	

4.1 Bounds on the expected number of idle
iterations

The rest of the analysis focuses on bounding the number of
idle iterations that take place during a computation’s execu-
tion, and follows the same general arguments as the analysis
presented in Arora et al., (2001).

We say that a node u is stealable if u is stored in the public
part of some processor’s split deque. Furthermore, we denote
the set of ready nodes at some step i by Ri . Consider any node
u ∈ Ri . The potential associated with u at step i is denoted
by φi (u) and is defined as

φi (u) =

⎧
⎪⎨
⎪⎩

43w(u)−2 ifu is assigned

43w(u)−1 ifu is stealable

43w(u) otherwise.

The total potential at step i , denoted by �i , corresponds
to the sum of potentials of all the nodes that are ready at that
step: �i = ∑

u∈Ri φi (u).
The following lemma is a formalization of the arguments

already given in Arora et al., (2001), but considering the
potential function we present.

Lemma 7 Consider some node u, ready at step i during the
execution of a computation.

1. If u gets assigned to a processor at that step, the potential
drops by at least 3

4φi (u).
2. If u becomes stealable at that step, the potential drops by

at least 3
4φi (u).

3. If u wasalreadyassigned toaprocessor andgets executed
at that step i , the potential drops by at least 47

64φi (u).

For the remainder of the analysis, we make use of a few
more definitions, first introduced in Arora et al., (2001). We
denote the set of ready nodes attached to some processor p
(i.e., the ready nodes in p’s split deque together with the
node it has assigned, if any) at the beginning of some step i
by Ri (p). Furthermore, we define the total potential associ-
ated with p at step i as the sum of the potentials of each of
the nodes that is attached to p at the beginning of that step
�i (p) = ∑

u∈Ri (p) φi (u).
For each step i , we partition the processors into two sets,

Di and Ai , where the first is the set of all processors whose
split deque is not empty at the beginning of step i , while the
second is the set of all other processors (i.e., the set of all
processors whose split deque is empty at the beginning of
that step). Thus, the potential of any step i , �i , is composed
by the potential associated with each of these two partitions
�i = �i (Di ) + �i (Ai ), where �i (Di ) = ∑

p∈Di
�i (p)

and �i (Ai ) = ∑
p∈Ai

�i (p).
The following lemma is a direct consequence of Corol-

lary 1 and of the potential function’s properties.

Lemma 8 Consider any step i and any processor p ∈ Di .
The top-most node u in p’s split deque contributes at least 4

5
of the potential associated with p. That is, we have φi (u) ≥
4
5�i (p).

With this, we now show that if a processor p is targeted
by a steal attempt, then p’s potential decreases by a constant
factor. RecallC denotes a large enough constant such that any
sequence of C instructions executed by a processor includes
a milestone.

Lemma 9 Suppose a thief processor p chooses a processor
q ∈ Di as its victim at some step j , such that j ≥ i (i.e., a
steal attempt of p targeting q occurs at step j). Then, at step
j+2C, the potential decreased by at least 35�i (q) due either
to assigning the topmost node in q’s split deque, or to making
the topmost node of q’s split deque become stealable.

The next lemma is a trivial generalization of the original
result presented in Arora et al., (2001), Balls and Weighted
Bins.

Lemma 10 (Balls and Weighted Bins) Suppose we are given
at least B balls and exactly B bins. Each of the balls is
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tossed independently and uniformly at random into one of
the B bins, where for i = 1, . . . , B, bin i has a weight Wi .
The total weight is W = ∑B

i=1 Wi . For each bin i , we define
the random variable Xi as

Xi =
{
Wi if some ball lands in bin i
0 otherwise

and define the random variable X as X = ∑B
i=1 Xi . Then,

for any β in the range 0 < β < 1, we have P {X ≥ βW } ≥
1 − 1

(1−β)e .

The following result states that for each P idle iterations
that take place, with constant probability, the total poten-
tial drops by a constant factor. The result is a consequence of
Lemmas 9 and 10. Again, recall that any sequence of instruc-
tions with length at least C includes a milestone.

Lemma 11 Consider any step i and any later step j such
that at least P idle iterations occur from i (inclusive) to j
(exclusive). Then, we have

P

{
�i − � j+2C ≥ 3

10
�i (Di )

}
>

1

4
.

Following Lemma 11, we are able to bound the expected
number of idle iterations that take place during a com-
putation’s execution using the Low-Cost Work Stealing
algorithm.

Lemma 12 Consider any computation with work T1 and
critical-path length T∞ being executed by Low-Cost Work
Stealing using P processors. The expected number of idle
iterations is at most O (PT∞), and with probability at
least 1 − ε, the number of idle iterations is at most
O

((
T∞ + ln

( 1
ε

))
P

)
.

Finally, using Lemma 12, we can obtain bounds on both
expected runtime of computations executed by the Low-Cost
Work Stealing algorithm, and the associated synchronization
overheads.

Theorem 1 Consider any computation with work T1 and
critical-path length T∞ being executed by the Low-Cost
Work Stealing algorithm with P processors. The expected

execution time is at most O
(
T1
P + T∞

)
, and with prob-

ability at least 1 − ε, the execution time is at most

O
(
T1
P + T∞ + ln

( 1
ε

))
. Moreover, the expected number of

CAS and MFence instructions executed during the compu-
tation’s execution caused by Low-Cost Work Stealing is at
most O (PT∞), and with probability at least 1− ε the num-
ber of CAS and MFence instructions executed is at most
O

(
P

(
T∞ + ln

( 1
ε

)))
.

Proof Both results follow directly from Lemmas 4, 6 and 12.
�	

Corollary 2 Consider the statement of Theorem 1. Fur-
thermore, let CCAS and CMFence denote, respectively, the
maximum synchronization overheads incurred by the exe-
cution of a CAS and MFence instructions. The expected
synchronization overheads incurred by Low-Cost Work
Stealing are at most O ((CCAS + CMFence) PT∞) , and
with probability at least 1 − ε the synchronization over-
heads incurred by Low-Cost Work Stealing are at most
O

(
(CCAS + CMFence) P

(
T∞ + ln

( 1
ε

)))
.

Proof As already mentioned, and by considering the defini-
tion of Low-Cost Work Stealing, depicted in Algorithm 1,
the only synchronization mechanisms the scheduler uses are
CAS andMFence instructions. This corollary is then a direct
consequence of Theorem 1 that takes into account the maxi-
mum possible overhead incurred by the execution of a single
CAS and MFence instructions. �	

5 Comparison with work stealing

To get a better understanding of the importance of avoiding
synchronization for local deque accesses, we now compare
the synchronization costs of our algorithm against conven-
tional Work Stealing algorithms that use concurrent deques.
To that end, we developed a simulator that, given a compu-
tation’s dag, executes it, monitoring not only the number of
CAS and MFence instructions executed but also the number
of times that thieves requested other processors to expose
work. In this section, we use the term notification to refer to
when a thief sets another processor’s targeted flag to true,
requesting it to expose work.

For this comparison, we consider two distinct classes
of dags: regular and irregular. Regular dags essentially
correspond to trees of instructions where every non-leaf
instruction forks two other instructions, and whose depth is
given by an argument that is passed to the simulator. Irregu-
lar Dags are intended to simulate unbalanced computations.
To that end, we use the argument passed to the simulator
as the total depth of the dag and make the depth between
each two consecutive fork instructions follow an exponen-
tial distribution with parameter λ = 0.05. The first class of
dags corresponds to computations with balanced parallelism
(e.g., Fibonacci, Parallel-For, etc.) whilst the second corre-
sponds to the ones with unbalanced parallelism (e.g., Graph
Searches).

From Fig. 2a, it is clear that while for Work Stealing with
concurrent deques the number of synchronization operations
grows linearly with the total amount of work (and thus expo-
nentially increases with the span of the dag), for Low-Cost
Work Stealing the number of synchronization operations and
notifications scales linearly with the span of the computa-
tion. Thus, even if the costs of handling notifications (i.e., of
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(a) (b)

(c)

Fig. 2 Comparison of Low-Cost Work Stealing (LCWS) with Classical Work Stealing (CWS)

exposingwork)were a thousand times greater than the cost of
executing CAS or MFence instructions, for dags with fork-
span of at least ≈ 20, our algorithm would incur in less
synchronization overheads. In practice, computations with
a fork-span ≥ 20 are very common, especially among fine-
grained parallelism. Unfortunately, due to the limitations that
comewith using a simulator, we have not been able to bench-
mark dags with a fork-span greater than 25. Yet, we remark
that the trend is clear and confirms that the use of split deques
allows to avoid most of the synchronization that is present in
conventional Work Stealing algorithms. Figure 2b reinforces
our insight, showing that even for computations exhibiting
irregular parallelism, Low-Cost Work Stealing is able to
avoid most of the synchronization present in Work Stealing
algorithms that use concurrent deques. Finally, Fig. 2c shows

that while the synchronization costs for Work Stealing are
always extremely high, even for single processor executions,
for Low-Cost Work Stealing these costs only grow linearly
with the number of processors used and, for a single proces-
sor execution, synchronization is negligible.

From a more theoretical perspective, note that, by taking
into account our assumptions (which are standard:Acar et al.,
2002, 2013; Agrawal et al., 2007, 2008; Arora et al., 1998,
2001; Blumofe & Leiserson, 1999; Muller & Acar, 2016;
Tchiboukdjian et al., 2010) regarding computations’ struc-
ture, we can create computations for which T1 = O

(
2T∞)

(which correspond to dags of the first class). Since for such
computations the number of deque accesses is directly pro-
portional to the total amount of work (T1), our result shows
that the use of split deques allows one to reduce by almost
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an exponential factor the synchronization present in conven-
tional Work Stealing algorithms.

6 Related work

Many efforts have been carried out toward reducing and even
eliminating the expensive synchronization present in state-
of-the-art Work Stealing schedulers.

Michael et al. proposed an idempotent version of Work
Stealing that eliminates the overheads of synchronization
by relaxing the semantics of work queues (Michael et al.,
2009). Concretely, rather than using the conventional exactly
once semantics, the authors present several concurrent data
structures only satisfying at-least-once semantics. By using
these structures, processors no longer have to incur expensive
synchronization overheads when operating locally, which, as
the authors show, can be extremely beneficial. Unfortunately
this strategy suffers from two limitations: On the one hand,
for non-idempotent computations the synchronization over-
heads are moved to the computation itself, as it is necessary
to ensure correctness; on the other, for idempotent compu-
tations these semantics can lead to situations where some
computationally heavy tasks are executed more than once,
limiting the scheduler’s performance.

Endo et al. were the first to use split queues to avoid unnec-
essary synchronization (Endo et al., 1997). In this study,
the authors present an implementation of a scalable garbage
collector system that, by using clever load balancing tech-
niques and split queues to avoid unnecessary synchronization
overheads, achieves high performance even for large-scale
machines.

In (Dinan et al., 2008, 2009), Work Stealing is studied
under a distributed environment and the use of split deques to
avoid synchronization for local deque accesses is proposed.
The authors showcased the practical advantages of using split
deques in large scale distributed settings, comparing the per-
formance of their algorithm when using split deques versus
when using concurrent deques.

Lifflander et al. studied the execution of iterative over-
decomposed applications (Lifflander et al., 2012) and pro-
posed, among others, a message-based retentive Work Steal-
ing algorithmadapted for the executionof iterativeworkloads
on large scale distributed settings. To avoid synchronization
overheads and improve the overall performance of the sched-
uler, their Work Stealing algorithm uses split deques. Their
evaluation shows that Work Stealing (with split deques) is
a practical algorithm even for systems with hundreds of
thousands of processors. A distinction between the Work
Stealing algorithm proposed by Lifflander et al. and Low-
Cost Work Stealing is that our algorithm keeps processors’
deques entirely private by default. As we will discuss in

Sect. 7, this fact is key for guaranteeing that a 1-Processor
execution of our algorithm requires no synchronization.

Tzannes et al. proposed a scheduling algorithmwhere each
processor keeps all of its work entirely private, except for the
topmost node that is kept stored in a shared cell (Tzannes
et al., 2011). Since the algorithm always ensures that the
topmost node is shared, it does not behave appropriately for
computations in which processors frequently access the top-
most nodes of their deques. As mentioned in Acar et al.,
(2013), a similar limitation has been identified for the Chase–
Lev Deque (Chase & Lev, 2005). Unfortunately, in all these
approaches (Dinan et al., 2008, 2009; Lifflander et al., 2012;
Tzannes et al., 2011), processors expose work too eagerly,
always leaving some work exposed for thieves to take. A
consequence of this design choice is that synchronization
overheads still scale with the total amount of work.

Hiraishi et al. suggested that processors should behave
as in a sequential execution, thus eliminating all overheads
inherent from parallelism (Hiraishi et al., 2009). Under their
scheme, deques are kept entirely private and processors only
permit parallelism when an idle processor requests work.
Upon such request, the busy processor backtracks to the last
point where it could have spawned a task, spawns the task,
offers it to the requesting processor, and, finally, proceeds
with the execution. Since work requests are usually rare,
the gains of eliminating synchronization for local operation
greatly surpass the extra overheads caused by using entirely
private deques, which for this algorithm come from back-
tracking. This remark is key and motivated the efforts for
reducing synchronization overheads to focus on the elimina-
tion of synchronization for local operation.

Morrison et al. studied alternative designs to the syn-
chronization protocols used by Work Stealing schedulers,
considering the architectures of modern TSO processors
(Morrison et al., 2014). The authors found that by taking
into account the actual implementation of microprocessors,
MFence instructions can be fully eliminated while maintain-
ing correctness. In their algorithm, thieves can only steal
work from a victim if such work is stored at a safe distance,
far enough from the bottom of the victim’s deque to avoid
any data race. This safe distance is computed a priori, taking
into account the size of the microprocessor’s internal store
buffer to determine the minimum safe distance to avoid any
possible conflicts. With this strategy, not only thieves can
asynchronously take work from their victims, but processors
can also access their deques locally without requiring any
synchronization. Unfortunately, their scheme suffers from a
limitation similar to Dijk et al.’s, as the bottommost threads
within a processor’s deque cannot be stolen, meaning their
strategy is not appropriate for generic computations (van
Dijk & van de Pol, 2014; van Ede, 2015). Nevertheless, the
authors’ showed that this technique (similar to using split
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deques) substantially outperforms Work Stealing algorithms
that use concurrent deques.

More recently, Dijk et al. studied the effectiveness of split
deques on shared memory environments (van Dijk & van
de Pol, 2014; van Ede, 2015). In their approach, however,
busy processors only check for work requests each time they
access their deque,which precludes any performance guaran-
tees for generic computations. This is since the frequency at
whichbusyprocessorsmaypermit loadbalancingdepends on
the structure of the computation. In particular, for computa-
tionswhoseworkload ismostly composedby large sequential
threads, processors will rarely check for the necessity of load
balancing, giving a very small room for parallelism. More-
over, whenever a busy processor realizes it was targeted by a
steal attempt, it exposes at least half of its work. This strategy
increases the unnecessary synchronization costs incurred by
the algorithm as busy processors now have to start accessing
the shared part of their work-queue more often to fetch work.
In conclusion, although this work builds from an idea similar
to ours, the proposed design choices preclude performance
guarantees for generic computations.

Acar et al. presents two Work Stealing algorithms—
sender- and receiver-initiated—that avoid synchronization
by making deques entirely private to each processor (Acar
et al., 2013). In addition to promising empirical results, the
authors show that the expected execution time for both algo-
rithms can be somewhat competitive with Work Stealing
algorithms that use concurrent deques. Unfortunately, for
the sender-initiated algorithm, busy processors now have to
periodically search for idle ones, leading to unnecessary com-
munication and synchronization overheads that still scale
with the computation’s execution time, and thus, indirectly,
with the total amount of work. The difference between the
receiver-initiated algorithm and ours is more subtle, how-
ever. In their receiver-initiated algorithm, busy processors
now have to periodically check for incoming steal requests as
well as to expose part of their current state by means of a flag
that indicates whether they have any work to offer. By care-
fully analyzing Acar et al.’s receiver-initiated algorithm, one
can see that indeed for checking and updating such exposed
state, a memory fence is required.1 This contrasts with our
work, which does not require any sort of instruction syn-
chronization. More concretely, our algorithm only requires
reading a fresh Boolean flag from the memory, an operation
not requiring any type of synchronization. This difference
is reflected, for example, in a sequential execution: While

1 In particular, a processor pi must execute anMFence instruction after
writing the variable a[i] (in the update_status method) to guarantee
that idle processors learn, in constant time, that pi has work to be stolen
(see Sewell et al., 2010), as is required to achieve the expected runtime
bounds presented in their paper.

our algorithm essentially does not use synchronization, the
receiver-initiated algorithm does.

7 Conclusion

In this paper, we studied a Work Stealing algorithm that uses
split deques to reduce synchronization overheads. Whereas
traditionalWork Stealing algorithms require synchronization
for every time processors access deques, in our proposal,
synchronization operations are employed optimally, which
is the key for eliminating most unnecessary synchroniza-
tion overheads. By default, busy processors operate locally
on their deques without any synchronization, resembling a
sequential execution. Idle processors can request busy ones to
expose some of their work, thus allowing for load balancing
via direct steals. This lazy approach for using synchroniza-
tion is the key for guaranteeing an asymptotically optimal
expected runtime while provably reducing synchronization
overheads. Indeed,we proved that the expected total synchro-
nization of the algorithm is O (PT∞ (CCAS + CMFence)). To
justify the tightness of our bounds, we recall that, for Low-
Cost Work Stealing, the expected number of (successful and
unsuccessful) steal attempts is O (PT∞). By noting that the
public part of an split deque is essentially a concurrent deque,
and, by taking into account the impossibility of eliminating
all synchronization from the implementation of concurrent
deques while maintaining their correctness (see Attiya et al.,
2011), we conclude that the synchronization bounds we have
obtained for Low-Cost Work Stealing are tight.

Finally, and as already discussed in Sect. 5, for several
types of computations, the synchronization overheads of con-
ventional Work Stealing algorithms grow linearly with both
the total amount ofwork and the number of steal attempts. For
numerous classes of parallel computations, the total amount
of work increases exponentially with the span of the compu-
tation (i.e., T1 = O

(
2T∞)

). From this perspective, our results
make evident the significance of the improvement of Low-
Cost Work Stealing over prior Work Stealing algorithms:
Not only are the synchronization overheads incurred by our
algorithm (essentially) exponentially smaller than previous
algorithms, but our algorithm also maintains the asymptot-
ically optimal expected runtime bounds of the concurrent
deque Work Stealing algorithm (Arora et al., 2001).
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A Proofs

Lemma 3 is crucial for the performance analysis of Low-Cost
Work Stealing. An analogous result has already been proved
for concurrent deques (see Arora et al., 2001, Lemma 3). For
the sake of completeness we present its proof, which is a
simple transcription of original proof of Arora et al. (2001,
Lemma 3), adapted for split deques.

Lemma 3 (Structural Lemma for split deques)Let v1, . . . , vk
denote the nodes stored in some processor p’s split deque,
ordered from the bottom of the split deque to the top, at some
point in the linearized execution of Low-Cost Work Stealing.
Moreover, let v0 denote p’s assigned node (if any), and for
i = 0, . . . , k let ui denote the designated parent of vi in
the enabling tree. Then, for i = 1, . . . , k, ui is an ances-
tor of ui−1 in the enabling tree, and although v0 and v1
may have the same designated parent (i.e., u0 = u1), for
i = 2, 3, . . . , k, ui−1 �= ui (i.e., the ancestor relationship is
proper).

Proof Fix a particular split deque. The split deque state and
assigned node only change when the assigned node is exe-
cuted or a thief performs a successful steal. We prove the
claim by induction on the number of assigned-node execu-
tions and steals since the split deque was last empty. In the
base case, if the split deque is empty, then the claim holds
vacuously. We now assume that the claim holds before a
given assigned-node execution or successful steal, and we
will show that it holds after. Specifically, before the assigned-
node execution or successful steal, let v0 denote the assigned
node; let k denote the number of nodes in the split deque; let
v1, . . . , vk denote the nodes in the split deque ordered from
the bottom to top; and for i = 0, . . . , k, let ui denote the
designated parent of vi . We assume that either k = 0, or for
i = 1, . . . , k, node ui is an ancestor of ui−1 in the enabling
tree, with the ancestor relationship being proper, except pos-
sibly for the case i = 1. After the assigned-node execution or
successful steal, let v0′ denote the assigned node; let k′ denote
the number of nodes in the split deque; let v1′, . . . , vk ′ denote
the nodes in the split deque ordered from bottom to top; and
for i = 1, . . . , k′, let ui ′ denote the designated parent of vi

′.
We now show that either k′ = 0, or for i = 1, . . . , k′, node ui ′
is an ancestor of ui−1

′ in the enabling tree, with the ancestor
relationship being proper, except possibly for the case i = 1.

Consider the execution of the assigned node v0 by the
owner.

If the execution of v0 enables 0 children, then the owner
pops the bottommost node off its split deque and makes that
node its new assigned node. If k = 0, then the split deque
is empty; the owner does not get a new assigned node; and
k′ = 0. If k > 0, then the bottommost node v1 is popped and
becomes the new assigned node, and k′ = k − 1. If k = 1,
then k′ = 0. Otherwise, k′ = k − 1. We now rename the

nodes as follows. For i = 0, . . . , k′, we set vi
′ = vi+1 and

ui ′ = ui+1. We now observe that for i = 1, . . . , k′, node ui ′
is a proper ancestor of ui−1

′ in the enabling tree.
If the execution of v0 enables 1 child x , then x becomes

the new assigned node; the designated parent of x is v0; and
k′ = k. If k = 0, then k′ = 0. Otherwise, we can rename
the nodes as follows. We set v0

′ = x ; we set u0′ = v0; and
for i = 1, . . . , k′, we set vi

′ = vi and ui ′ = ui . We now
observe that for i = 1, . . . , k′, node ui ′ is a proper ancestor
of ui−1

′ in the enabling tree. That u1′ is a proper ancestor of
u0′ in the enabling tree follows from the fact that (u0, v0) is
an enabling edge.

In the most interesting case, the execution of the assigned
node v0 enables 2 children x and y, with x being pushed
onto the bottom of the split deque and y becoming the new
assigned node. In this case, (v0, x) and (v0, y) are both
enabling edges, and k′ = k + 1. We now rename the nodes
as follows. We set v0′ = y; we set u0′ = v0; we set v1′ = x ;
we set u1′ = v0; and for i = 2, . . . , k′, we set vi

′ = vi−1

and ui ′ = ui−1. We now observe that u1′ = u0′, and for
i = 2, . . . , k′, node ui ′ is a proper ancestor of ui−1

′ in the
enabling tree. That u2′ is a proper ancestor of u1′ in the
enabling tree follows from the fact that (u0, v0) is an enabling
edge.

Finally, we consider a successful steal by a thief. In this
case, the thief pops the topmost node vk off the split deque, so
k′ = k − 1. If k = 1, then k′ = 0. Otherwise, we can rename
the nodes as follows. For i = 0, . . . , k′, we set vi ′ = vi and
ui ′ = ui . We now observe that for i = 1, . . . , k′, node ui ′
is an ancestor of ui−1

′ in the enabling tree, with the ancestor
relationship being proper, except possibly for the case i = 1.

�	
Corollary 1 If v0, v1, . . . , vk are as defined in the state-
ment of Lemma 3, then we have w (v0) ≤ w (v1) < · · · <

w (vk−1) < w (vk).

Weare nowable to bound the execution time of a computa-
tion depending on the number of idle iterations that take place
during that computation’s execution. The following result is
a trivial variant of Arora et al. (2001, Lemma 5) but con-
sidering the Low-Cost Work Stealing algorithm, and is only
added for the sake of completion.

Lemma 4Consider any computationwithwork T1 being exe-
cuted by P processors, under Low-Cost Work Stealing. The

execution time is O
(
T1
P + I

P

)
, where I denotes the number

of idle iterations executed by processors.

Proof Consider two buckets to which we add tokens during
the computation’s execution: the busy bucket and the idle
bucket. At the end of each iteration, every processor places
a token into one of these buckets. If a processor executed
a node during the iteration, it places a token into the busy
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bucket, and otherwise, it places a token into the idle bucket.
Since we have P processors, for each C consecutive steps,
at least P tokens are placed into the buckets.

Because, by definition, the computation has T1 nodes,
there will be exactly T1 tokens in the busy bucket when the
computation’s execution ends. Moreover, as I denotes the
number of idle iterations, it also corresponds to the number
of tokens in the idle bucketwhen the computation’s execution
ends. Thus, exactly T1 + I tokens are collected during the
computation’s execution. Taking into account that for eachC
consecutive steps at least P tokens are placed into the buck-
ets, we conclude the number of steps required to collect all

the tokens is at most C ·
(
T1
P + I

P

)
. After collecting all the

T1 tokens, the computation’s execution terminates, implying

the execution time is at most O
(
T1
P + I

P

)
. �	

The following lemma is a formalization of the arguments
already given in Arora et al., (2001), but considering the
potential function we present.

Lemma 7 Consider some node u, ready at step i during the
execution of a computation.

1. If u gets assigned to a processor at that step, the potential
drops by at least 3

4φi (u).
2. If u becomes stealable at that step, the potential drops by

at least 3
4φi (u).

3. If u wasalreadyassigned toaprocessor andgets executed
at that step i , the potential drops by at least 47

64φi (u).

Proof Regarding the first claim, if u was stealable the poten-
tial decreases from 43w(u)−1 to 43w(u)−2. Otherwise, the
potential decreases from 43w(u) to 43w(u)−2, which is even
more than in the previous case. Given that 43w(u)−1 −
43w(u)−2 = 3

4φi (u), we conclude that if u gets assigned
the potential decreases by at least 3

4φi (u).
Regarding the second one, note that u was not stealable

(because it became stealable at step i) and so the potential
decreases from43w(u) to 43w(u)−1. So, if u becomes stealable,
the potential decreases by 43w(u) − 43w(u)−1 = 3

4φi (u).
We now prove the last claim. Recall that, by our conven-

tions regarding computations’ structure, each node within a
computation’s dag can have an out-degree of at most two.
Consequently, each node can be the designated parent of at
most two other ones in the enabling tree.Moreover, by defini-
tion, theweight of any node is strictly smaller than theweight
of its designated parent, since it is deeper in the enabling tree
than its designated parent. Consider the three possible sce-
narios:

0 nodes enabled The potential decreased by φi (u).
1 node enabled The enabled node becomes the assigned

node of the processor (that executed u). Let x denote the

enabled node. Since x is the child of u in the enabling
tree, it followsφi (u)−φi+1 (x) = 43w(u)−2−43w(x)−2 =
43w(u)−2 − 43(w(u)−1)−2 = 63

64φi (u). Thus, for this situ-
ation, the potential decreases by 63

64φi (u).
2 nodes enabled In this case, one of the enabled nodes
immediately becomes the assigned node of the processor
whist the other is pushed onto the bottom of the split
deque’s private part. Let x denote the enabled node that
becomes the processor’s new assigned node and y the
other enabled node. Since both x and y have u as their
designated parent in the enabling tree, we have φi (u) −
φi+1 (x) − φi+1 (y) = 43w(u)−2 − 43w(x)−2 − 43w(y) =
47
64φi (u). As such, the potential decreases by 47

64φi (u),
concluding the proof of the lemma. �	

The following lemma is a direct consequence of Corol-
lary 1 and of the potential function’s properties. The result is
a variant of Arora et al., (2001), Top-Heavy Deques, consid-
ering split deques instead of the conventional fully concurrent
deques, and our potential function, instead of the original.

Lemma 8 Consider any step i and any processor p ∈ Di .
The top-most node u in p’s split deque contributes at least 4

5
of the potential associated with p. That is, we have φi (u) ≥
4
5�i (p).

Proof This lemma follows from Corollary 1. We prove it by
induction on the number of nodes within p’s split deque.

Base case As the base case, consider that p’s split deque
contains a single node u. The processor itself can either
have or not an assigned node. For the second scenario,
we have φi (u) = �i (p). Regarding the first case, let
x denote p’s assigned node. Corollary 1 implies that
w (u) ≥ w (x). It follows �i (q) = φi (u) + φi (x) =
43w(u)−1 + 43w(x)−2 ≤ 5

4φi (u). Thus, if p’s split deque
contains a single node we have �i (q) ≤ 5

4φi (u).
Induction step Consider that p’s split deque now contains

n nodes, where n ≥ 2, and let u, x denote the topmost
and second topmost nodes, respectively, within the split
deque. For the purpose of induction, let us assume the
lemma holds for all the first n − 1 nodes (i.e., without
accounting with u): �i (p) − φi (u) ≤ 5

4φi (x). Corol-
lary 1 implies w (u) > w (x) ≡ w (u) − 1 ≥ w (x).
It follows �i (p) ≤ 5

4φi (x) + φi (u) = 5
44

3w(x) +
43w(u)−1 ≤ 5

44
3(w(u)−1) + 43w(u)−1 = 69

64φi (u) <
5
4φi (u) concluding the proof of the lemma. �	

The following result is a consequence of Lemma 8.

Lemma 9 Suppose a thief processor p chooses a processor
q ∈ Di as its victim at some step j , such that j ≥ i (i.e., a
steal attempt of p targeting q occurs at step j). Then, at step
j + 2C, the potential decreased by at least 3

5�i (q) due to
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either the assignment of the topmost node in q’s split deque,
or for making the topmost node of q’s split deque become
stealable.

Proof Let u denote the topmost node of q’s split deque at the
beginning of step i . We first prove that u either gets assigned
or becomes stealable.

Three possible scenarios may take place due to p’s steal
attempt targeting q’s split deque.

The invocation returns a node If p stole u, then, u gets
assigned to p. Otherwise, some other processor removed
u before p did, implying u got assigned to that other
processor.

The invocation aborts Since the split deque implementation
meets the relaxed semantics on any good set of invoca-
tions, and because theLow-CostWorkStealing algorithm
only makes good sets of invocations, we conclude that
some other processor successfully removed a topmost
node from q’s split deque during the aborted steal attempt
made by p. If the removed node was u, u gets assigned
to a processor (that may either be q, or, some other thief
that successfully stole u). Otherwise, u must have been
previously stolen by a thief or popped by q, and thus
became assigned to some processor.

The invocation returns empty This situation can only occur
if either q’s split deque is completely empty, or if there
is no node in the public part of q’s split deque.

– For the first case, since q ∈ Di , some processor must
have successfully removed u from q’s split deque.
Consequently, u was assigned to a processor.

– If there was no node in the public part of q’s split
deque, p sets q’s targeted flag to true in a later step
j ′. Recall that, for each C consecutive instructions
executed by a processor, at least one corresponds to
a milestone. It follows that j ′ ≤ j +C . Furthermore,
by observing Algorithm 1, we conclude that q will
make and complete an invocation to updateBottom
of its split deque in one of theC steps succeeding step
j ′. Thus, if q’s split deque’s private part is not empty,
a node will become stealable. From that invocation,
only two possible situations can take place:

Nonodebecomes stealable In this case, the private
part of q’s split dequewas empty, implying some
processor (either q or some thief) assigned u.
A node becomes stealable If the node that became
stealable as the result of the invocation was not
u, then either u was assigned by a processor
(that could have been q or some thief), or u had
already been transferred to the public part of q’s
split deque as a consequence of another thief’s
steal attempt that also returned empty, implying
that either u became assigned, or it became steal-

able. Otherwise, the node that became stealable
as a result of the updateBottom’s invocation
was u. Thus, in any case, u either gets assigned
to a processor or becomes stealable.

With this, we conclude that u either became assigned or
became stealable until step j + 2C .

From Lemma 8, we have φi (u) ≥ 4
5�i (q). Furthermore,

Lemma7proves that ifu gets assigned the potential decreases
by at least 3

4φi (u), and if u becomes stealable the poten-
tial also decreases by at least 3

4φi (u). Because u is either
assigned or becomes stealable in any case, we conclude the
potential associated with q at step j + 2C has decreased by
at least 3

5�i (q). �	
The following lemma is trivial a generalization of the orig-

inal result presented inArora et al. (2001, Balls andWeighted
Bins). The only difference between the two results is the
assumption of having at least B balls, rather than exactly B
balls. Its proof is only presented for the sake of completion
and is (trivially) adapted from the proof of Arora et al. (2001,
Balls and Weighted Bins).

Lemma 10 (Balls and Weighted Bins) Suppose we are given
at least B balls, and exactly B bins. Each of the balls is
tossed independently and uniformly at random into one of
the B bins, where for i = 1, . . . , B, bin i has a weight Wi .
The total weight is W = ∑B

i=1 Wi . For each bin i , we define
the random variable Xi as

Xi =
{
Wi if some ball lands in bin i
0 otherwise

and define the random variable X as X = ∑B
i=1 Xi .

Then, for any β in the range 0 < β < 1, we have

P {X ≥ βW } ≥ 1 − 1

(1 − β) e
.

Proof Consider the randomvariableWi−Xi taking the value
of Wi when no ball lands in bin i and 0 otherwise, and let
B ′ denote the total number of balls that are tossed. It follows
E [Wi − Xi ] = Wi

(
1 − 1

B

)B′ ≤ Wi
e . From the linearity of

expectation, we have E [W − X ] ≤ W
e . Markov’s inequality

then implies P {W − X > (1 − β)W } = P {X < βW } ≤
E[W−X ]
(1−β)W ≤ 1

(1−β)e . �	
The following result states that for each P idle iterations

that take place, with constant probability the potential drops
by a constant factor. An analogous lemmawas originally pre-
sented in Arora et al. (2001, Lemma 8) for the non-blocking
WorkStealing algorithm.The result is a consequence ofLem-
mas 9 and 10, and its proof follows the same traits as the one
presented in that study.
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Lemma 11 Consider any step i and any later step j such
that at least P idle iterations occur from i (inclusive) to j
(exclusive). Then, we have

P

{
�i − � j+2C ≥ 3

10
�i (Di )

}
>

1

4
.

Proof By Lemma 9 we know that for each processor p ∈ Di

that is targeted by a steal attempt, the potential drops by at
least 3

5�i (p), at most 2C steps after being targeted.
When executing an idle iteration, a processor plays the

role of a thief attempting to steal work from some victim.
Thus, since P idle iterations occur from step i (inclusive) to
step j (exclusive), at least P steal attempts take place during
that same interval. We can think of each such steal attempt
as a ball toss of Lemma 10.

For each processor p in Di , we assign it a weight Wp =
3
5�i (p), and for each other processor p in Ai , we assign it a
weightWp = 0. Clearly, the weights sum toW = 3

5�i (Di ).
Using β = 1

2 in Lemma 10, it follows that with probability
at least 1 − 1

(1−β)e > 1
4 , the potential decreases by at least

βW = 3
10�i (Di ), concluding the proof of this lemma. �	

Finally, we bound the expected number of idle iterations
that take place during a computation’s execution using the
Low-Cost Work Stealing algorithm. The result follows from
Lemma 11 and is proved using similar arguments as the ones
used in the proof of Arora et al. (2001, Theorem 9). The
presented proof corresponds to an adaptation of the one orig-
inally presented for the just mentioned theorem.

Lemma 12 Consider any computation with work T1 and
critical-path length T∞ being executed by Low-Cost Work
Stealing using P processors. The expected number of idle
iterations is at most O (PT∞). Moreover, with probabil-
ity at least 1 − ε the number of idle iterations is at most
O

((
T∞ + ln

( 1
ε

))
P

)
.

Proof To analyze the number of idle iterations, we break the
execution into phases, each composed by �(P) idle itera-
tions. Then, we prove that with constant probability, a phase
leads the potential to drop by a constant factor.

A computation’s execution begins when the root gets
assigned to a processor. By definition, the weight of the root
is T∞, implying the potential at the beginning of a compu-
tation’s execution starts at �0 = 43T∞−2. Furthermore, it is
straightforward to deduce that the potential is 0 after (and
only after) a computation’s execution terminates. We use
these facts to bound the expected number of phases needed
to decrease the potential down to 0. The first phase starts at

step t1 = 1 and ends at the first step t1′ such that, at least P
idle iterations took place during the interval

[
t1, t1′ − 2C

]
.

The second phase starts at step t2 = t1′ + 1, and so on.
Consider two consecutive phases starting at steps i and

j , respectively. We now prove that P
{
� j ≤ 7

10�i
}

> 1
4 .

Recall that we can partition the potential as �i = �i (Ai ) +
�i (Di ). Since, from the beginning of each phase and until
its last 2C steps, at least P idle iterations take place, then,
by Lemma 11 it follows P

{
�i − � j ≥ 3

10�i (Di )
}

> 1
4 .

Now, we have to prove the potential also drops by a constant
fraction of �i (Ai ). Consider some processor p ∈ Ai :

– If p does not have an assigned node, then �i (p) = 0.
– Otherwise, if p has an assigned node u at step i , then,

�i (p) = φi (u). Noting that each phase has more than
C steps, then, p executes u before the next phase begins
(i.e., before step j). Thus, the potential drops by at least
47
64φi (u) during that phase.

Cumulatively, for each p ∈ Ai , it follows �i − � j ≥
47
64�i (Ai ). Thus, no matter how �i is partitioned between
�i (Ai ) and �i (Di ), we have P

{
�i − � j ≥ 3

10�i
}

> 1
4 .

We say a phase is successful if it leads the potential to
decrease by at least a 3

10 fraction. So, a phase succeeds with
probability at least 1

4 . Since the potential is an integer, and,
as aforementioned, starts at�0 = 43T∞−2 and ends at 0, then
there can be atmost (3T∞ − 2) log 10

7
(4) < 12T∞ successful

phases. If we think of each phase as a coin toss, where the
probability that we get heads is at least 1

4 , then the expected
number of coins we have to toss to get heads 12T∞ times is at
most 48T∞. In the same way, the expected number of phases
needed to obtain 12T∞ successful ones is at most 48T∞.
Consequently, the expected number of phases is O (T∞).
Moreover, as each phase contains O (P) idle iterations, the
expected number of idle iterations is O (PT∞).

Now, suppose the execution takes n = 48T∞ +m phases.
Each phase succeeds with probability greater or equal to
p = 1

4 , meaning the expected number of successes is at
least np = 12T∞ + m

4 . We now compute the probability that
the number of X successes is less than 12T∞. We use the
Chernoff bound (Alon&Spencer, 1992), P {X < np − a} <

e− a2
2np with a = m

4 . It follows, np − a = 12T∞. Choos-
ing m = 48T∞ + 16 ln

( 1
ε

)
, we have P {X < 12T∞} <

e
− (m

4 )
2

2(12T∞+m
4 ) ≤ e− m

16 ≤ e− 16 ln
(
1
ε

)

16 = ε. Thus, the proba-
bility that the execution takes 96T∞ + 16 ln

( 1
ε

)
phases or

more, is less than ε. With this we conclude that the num-
ber of idle iterations is at most O

((
T∞ + ln

( 1
ε

))
P

)
with

probability at least 1 − ε. �	
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