Realistic Failures in Secure Multi-Party Computation*

Vassilis Zikas, Sarah Hausér and Ueli Mauret

Department of Computer Science, ETH Zurich, 8092 Zurichit&wland
L {vzi kas, maur er }@ nf . et hz. ch,
2 shauser @t udent . et hz. ch

Abstract. In secure multi-party computation, the different ways inieththe
adversary can control the corrupted players are descrilyedifferent corrup-
tion types. The three most common corruption types are eciirruption (the
adversary has full control over the corrupted player), passorruption (the ad-
versary sees what the corrupted player sees) and failqutioru (the adversary
can force the corrupted player to crastevocably). Because fail-corruption is
inadequate for modeling recoverable failures, the seedadimission corruption
was proposed and studied mainly in the context of Byzantigee@dment (BA). It
allows the adversary to selectively block messages semtdirad to the corrupted
player, but without actually seeing the message.

In this paper we propose a modular study of omission failur@dPC, by intro-
ducing the notions o$end-omissioifthe adversary can selectively block outgo-
ing messages) anéceive-omissiolfthe adversary can selectively block incom-
ing messages) corruption. We provide security definitiarspfotocols tolerat-
ing a threshold adversary who can actively, receive-omigsand send-omission
corrupt up totq, t,, andt, players, respectively. We show that the condition
3t. +1t,+1ts < nisnecessary and sufficient for perfectly secure MPC tdlegat
such an adversary. Along the way we provide perfectly sepuwtocols for BA
under the same bound. As an implication of our results, wevghat an adver-
sary who actively corrupts up t, players and omission corrupts (according to
the already existing notion) up tg players can be tolerated for perfectly secure
MPC if 3t, + 2t., < n. This significantly improves a result by Koo in TCC 2006.

1 Introduction

In secure multi-party computation (MP@)playersp1, . .., p, wish to securely com-
pute a function of their inputs. The computation should beueg in the sense that
the output is correct and the privacy of the players’ inpatsat violated. The security
should be guaranteed even when some of the players mishefaenisbehavior of
players is modeled by assuming a central adversary who gsrplayers. The most
typical corruption types are active corruption (the adaeyshas full control over the
corrupted player), passive corruption (the adversary ededever the player sees), and
fail-corruption (the adversary can make the player ciegivocably).

* This research was partially supported by the Swiss Nati®omnce Foundation (SNF), project
no. 200020-113700/1. An extended abstract of this work agakin TCC 2009.

Realistic Failures in Secure Multi-Party Computation 2

The study of MPC was initiated by Yao [Yao82]. The first gehedutions were
given by Goldreich, Micali, and Wigderson [GMW87]; thes®farcols are secure un-
der some intractability assumptions. Later solutions [B&MCCD88, RB89, Bea91b]
provide information-theoretic security.

One of the most studied sub-problems of secure multi-panyputation is Byzan-
tine Agreement (BA). BA comes in two flavors, namelynsensuandbroadcast In-
formally, consensus guarantees thaplayers, each holding an input, can agree on a
common output without destroying pre-agreement. On theradtiand, broadcast al-
lows a dedicated player to consistently send his input toyepiayer. BA serves as an
important tool for the design of multi-party protocols.

Failures in MPC. For motivating the different corruption-types one typlgahinks of
MPC as each player running his protocol on his (local) coraputhere the computers
can communicate over some network (e.g., the InternetsiRaand active corruption
correspond, for example, to (the adversary) planting a spgwr a virus, respectively,
to the player's computer. Fail-corruption, however, canchiécized as being not so
realistic due to the requirement that the crash is irreviecdhdeed, in real-world sce-
narios computer-crashes are not irrevocable and are ydisadld soon after they are
discovered, e.g., by replacing the computer.

Corruption types modeling more realistic failures tharewocable computer-
crashes have been studied in the literature. An examplesisdkcalledomission cor-
ruptionwhich allows the adversary to selectively block messagetsseeceived by the
corrupted player, but without seeing the actual messages€uon corruption models
failures that are apparent in many real-world applicatieng., a computer which might
lose messages while being restarted due to a hang of thetiogesgstem. It also mod-
els failures or temporary unavailability of the communicatnetwork, e.g., a router’s
buffer overflow, or instability of the links due to a thundensn. Partial asynchronity of
the network, i.e., the adversary causing unexpected delaysessages sent from and
to certain players, can also be modeled.

Omission corruption has been primarily studied in the cetméfault-tolerant con-
sensus [Had85, PT86, Ray02, PR03] and, recently, also in MBQD6].

Summary of known results.In the seminal papers solving the general MPC problem,
the adversary is specified by a single corruption type (aativpassive) and a thresh-
old ¢ on the tolerated number of corrupted players. Goldreictgaliliand Wigderson
[GMWS8T] proved that, based on cryptographic intractapidissumptions, general se-
cure MPC is possible if and only if < n/2 players are actively corrupted, or, al-
ternatively, if and only ift < n players are passively corrupted. In the information-
theoretic model, Ben-Or, Goldwasser, and Wigderson [BGW&B®I independently
Chaum, Crépeau, and Damgard [CCD88] proved that undondit security is pos-
sible if and only ift < n/3 for active corruption, and for passive corruption if andyonl
if ¢ < n/2. These results were unified and extended by fail-corruptigfHM98] by
proving that perfectly secure MPC is achievable if and oflgt, + 2t, + t; < n,
wheret,, t,, andt; denote the upper bounds on the number of actively, passarely
fail corrupted players, respectively.

A similar development as in MPC can be observed in the aregyp&itine agree-
ment protocols [LSP82, DS82, LF82, MP91, GP92, FM98].

Realistic Failures in Secure Multi-Party Computation 3

The first to consider omission corruption were Perry and TREB6]. They con-
sidered a threshold adversary who can omission corrupt tpleyers and showed that
BA tolerating this adversary is possible if and only i n. However their consistency-
guarantee is limited to the outputs of uncorrupted players,omission corrupted play-
ers are allowed to output arbitrary values. Raynal and Riyr{ieay02, PR0O3] proved
that if we require omission corrupted players to outputeithe correct value (i.e., con-
sistent with the output of uncorrupted players) or no vathen consensus is possible
if and only if 2¢ < n.

In the context of general MPC, omission corruption was fitstied, in combination
with active corruption, by Koo [Koo06]. He considered a 8ireld adversary who can
actively corruptup t@, players and, simultaneously, omission corrupt u,tplayers:
and proved that the conditios, + 2t, < n and3t, + 4t, < n are sufficient for
perfectly secure consensus and general MPC, respectidelyever, as we show in
Section 9, the conditiodt,, + 4t,, < n is far from optimal.

Our Contributions. We propose a modular study of realistic failures in multitpa
computation, by introducing the notionss#nd-omissioandreceive-omissiooorrup-
tion. As the names suggest, send-omission (resp. receingsimn) corruption allows
the adversary to selectively block only outgoing (respyantoming) messages of the
corrupted player, but without seeing the messages (thisnsistent with the existent
omission-corruption literature). Note that a player whorigission corrupted according
to the definitions of [PT86, Ray02, PR03, Koo06] can be thbo§hs a player who is
both send- and receive-omission corrupted at the same tanelarity we refer to this
type of corruption a$ull-omissioncorruption.

We provide security definitions for the model where the adagr can actively,
send-omission, and receive-omission corrupt playergjisémeously. We show that in
this model, an adversary who can actively, receive-omissind send-omission corrupt
up tot,, t,, andt, players, respectively, can be tolerated for perfectly se®lPC if
and only if3t, +t, + t, < n. Along the way, we also construct BA primitives for
the same bound. Our bound implies that the condision+ 2t,, < n is sufficient for
perfectly secure MPC.

The novelty of our approach is that, unlike past results attfimlerant MPC, we
primarily deal with the omissions on the network-level eest of internally in the proto-
col. In particular, using the paradigm of layered commutica(e.g., the OSI-model),
first we engineer the actual network to build a new netwosletavith better security
guarantees, and then we design protocols in which the @ay@nmunicate over this
higher network-layer. This approach leads to simpler andem@uitive protocols. For
the construction of our main protocol we also use ideas froeptayer-elimination
technique [HMPOO].

Outline of this paper. In Section 2 we define the model and introduce some notation.
In Section 3 we discuss the security definitions and provargossibility result. In
Sections 4 and 5 we show how to get an authenticated netwahksirong security
guarantees and then build BA protocols over it. In Sectiore@wovide tools that will

! In [Koo06], omission corrupted players are caltemhstrainedand actively corrupted are called
corrupted

Realistic Failures in Secure Multi-Party Computation 4

be used as building blocks for the construction of the SFEMRE protocols? these
protocols are described in Sections 7 and 8, respectivel@elction 9 we look at the
case of full-omission corruption.

2 The Model

We consider the standard secure-channels model introda¢B&W88, CCD88]: The
players in? = {pi,...,p,} are connected by a complete network of bilateral secure
channels. The communication is synchronous, i.e., allggalgave synchronized clocks
and there is a known upper bound on the delay of the network.cimputation is
described as an arithmetic circuit over some finite figJcconsisting of addition (or
linear) and multiplication gates.

We look at the case qferfectsecurity, i.e., information-theoretic without error prob
ability. A protocol is defined to be secure if it realizes astad functionality (comput-
ing the functionf), where the term “realize” is defined via the simulation pigean
[Can00, MR91, Bea91a, DM00, PWO01] which, in a nutshell, gntges that whatever
the adversary can achieve in the real world where the proiecexecuted, he could
also achieve in the ideal setting with the trusted functiiond This security notion im-
plies in particular that the adversary cannot obtain angrimftion about the players’
inputs beyond what is implied by the outputs (privacy), drat he cannot influence the
outputs other than by choosing the inputs of the corruptaygsk (correctness).

We consider a rushirfghreshold adversary who can actively, receive-omissiod, a
send-omission corrupt up g, t,, andt, players, respectively. The adversary chooses
the players to corrupt non-adaptively, i.e., before theigg of the protoco?.

To simplify the description we adopt the following convemt whenever a player
does not receive a message (when expecting one), or reeeimessage outside of the
expected range, then the special symbgl IF is taken for this message.

Everyp; € P can be in one of the following two internal statative or zombie At
the beginning of the computation every player is alive, \mhiteans that he correctly
executes all the protocol instructions (unless he is agtv@rrupted). Ifp; realizes that
he is receive-omission corrupted, e.g., by receiving fawessages than what he should
in some round, thep; sets his internal state to zombie (we say fhatecomes a zom-
bie). Once the state is set to zombie it never switches badombie behaves in the

2 SFE stands for Secure Function Evaluation, i.e., multiypesmputation ohon-reactiveunc-
tionalities.

8 While our protocols can be proved secure in any of these sition-based frameworks, with
perfect indistinguishability of the real and the ideal vabrive will not give full-fledged
simulation-based security proofs in this paper; this isststent with the previous literature
on secure SFE and MPC.

* A rushing adversary is an adversary who, in each round of the protdist, sees all the
messages sent to actively corrupted players in this rouddfzen decides how the corrupted
players should behave in this round.

5 In contrast, aradaptiveadversary can corrupt more and more players during the gobto
execution, subject only to the constraint that the numberofupted players of each type is
upper-bounded by the corresponding threshold. We do natidenthe adaptive setting in this
paper, but our results could be generalized to it.

Realistic Failures in Secure Multi-Party Computation 5

protocols as a player who has crashed, i.e., sends andescevmessages and has no
outputs. However, there are two conceptual differencesdomt zombies and crashed
players: (1) Being a zombie is a self-imposed state and spor@ls to a correct behav-
ior, i.e., players become zombies when the protocol (andhegadversary) instructs
them to; (2) zombie-players are “aware of the actual time"theey have clocks which
are synchronized with the clocks of the alive players; thislve useful in the context
of reactive computation (Section 8) where time plays an irgwd role.

The setsA, S, R, SR, and H. To simplify the description we denote the sets of ac-
tively, send-omission only, receive-omission only, aniét@missior? (but not actively)
corrupted players by, S, R, andSR, respectively, and the set of uncorrupted players
by H (H stands for “honest”). Note that these sets are a partitich@player sef,
they are not known to the players and appear only in the sg@malysis.

3 Security Definition

Intuitively, the security definition for our model shouldtradlow the adversary to do
more with send- and receive-omission corrupted playens tbaecide which of them
give input to and receive output from the computation, retipely. The strongest secu-
rity one can hope for is to require that the adversary’s decis taken independently
of the inputs of non actively corrupted players and beforeirge the outputs of ac-
tively corrupted players. More precisely one would be iagted in securely realizing
the functionality SRONG SFE (see below).

STRONG SFE - IDEAL MODEL. Eachp; € P has inputz;. The function to be
computed isf(-). The adversary decides which of the send-omission (respive-
omission) corrupted players give input to (resp. receivipotfrom) the trusted party
beforeseeing the outputs of actively corrupted players.

1. Everyp; € 'H U R sends his input to the trusted party (TP). Actively corraigte
players might send TP arbitrary inputs as instructed by theesesary. For each
p; € SR U S the adversary decides (without seejn(s input) whetherp, sends
TP his input or a default value frofii (e.g.,0). TP denotes the received values|by
...

2. TP computeg (2}, ...,2") = (y1,...,yn) (if fisrandomizedthen TP internally
generates the necessary random coins). TP asks the agwehseln of the players
p; € R U SR should receive their output; (without revealing any informatio
abouty;).

3. Foreactp; e HUSUA, TP sendg; to p;. For eactp; € RUSR, TP sendg; to
p; if the adversary allowed that; receives output in the previous step, otherwise

TP sends nothing tp;.

=

% Recall that a full-omission corrupted player is one who ithbgend- and receive-omission
corrupted at the same time.

" We assume that the reader is familiar with the ideal-woelalsworld paradigm for defining
security of multi-party protocols [Bea91a, MR91, Can00, @MBPWO03].

Realistic Failures in Secure Multi-Party Computation 6

We say that a protocdll strongly(t.,t,,t,)-securely evaluates the functigrif it
securely realizes the functionalityr8oNG SFE in the presence of an adversary who
can actively, receive-omission, and send-omission coupgot,, ¢,, andt, players,
respectively.

Unfortunately, as stated in the following lemma, when theeaslary is rushing then
for any non-trivial choice fot,, andt, there exist functions which cannot be perfectly
strongly (t., t,, t-)-securely evaluated. In fact our impossibility result ifiénent in
any setting where we have a threshold adversary with aabiveven just passive) and
receive-omission corruption, simultaneously. In paftcut also applies to the (non-
adaptive) case of active and full-omission corruption [B6]# The idea is the follow-
ing: the adversary might, with non-zero probability, catihe playerp; who is the
first (or among the first) to get the output, e.g., by randorhlyasing whom to corrupt.
In this case, as she is rushing, she can decide, dependirgeautput, whether the
receive-omission corrupted players get full informationtbe output or not. However,
the simulator has to take this decision without seeing thipuds of corrupted players,
and hence he is not able to perfectly simulate this behavior.

Lemma 1. If t, > 0 andt, > 0 and the adversary is rushing, then there exist functions
which cannot be perfectly strongly,,t,,-)-securely evaluated. The statement holds
even when we have passive instead of active corruption.

Proof. Consider the identity function, where every player P inputs some value;,
and the public output is the vector = (x4, ...,x,). Towards contradiction, assume
that there exists a perfectly,, t,, t,)-secure SFE protocol for this function, where
ta,t, > 0. This protocol implicitly defines for every, € P a round in whichpy
receives full information on the output. Leétk) denote this round. The adversary has
the following strategy: He picks two playgf andp; to corrupt actively and receive-
omission, respectively. Up to roungl:) the adversary instructs the playgrsandp;

to correctly follow the protocol ’s instructions. In roung:) the adversary learns the
outputz . Wlog we assume thatj; # 1. If z; = 1 then the adversary blocks all
incoming communication towardsg for the rest of the protocol including the messages
sent top; in round (i) (the adversary can do that as he is rushing) gig) > ¢(7)

with some non zero probability, if; = 1 thenp; outputs some’ # z . However,
the (ideal world) simulator does not knawy and cannot simulate this behavior. This
creates a difference in the output distribution of the rea ¢he ideal world, which
contradicts the claimed perfect security of the protocaté\that the proof also works
whenp; is only passively corrupted as the adversary only uses hisigtion onp; to
learn the output. a

We relax the definition of the functionality to allow the adsary to decide which
receive-omission corrupted players receive output, eften laaving seen the outputs of
actively corrupted players (and possibly depending ondlmagputs). Our relaxation is
minimal as Lemma 1 suggests. We call the resulting funcliy@FE (see next page).

8 In [Koo06] the assumed adversary is also rushing and the &daptive) ideal-world function-
ality requires the adversary to decide which omission qaed players receive output before
seeing the outputs of actively corrupted players.

Realistic Failures in Secure Multi-Party Computation 7

SFE — bEAL MODEL. Eachp; € P hasinputy;. The function to be computedfs-).
The adversary decides which of the receive-omission ctetuplayers receive outpuit
from the trusted partgfterreceiving the outputs of actively corrupted players.

1. Everyp; € 'H U R sends his input to the trusted party (TP). Actively corraigte
players might send TP arbitrary inputs as instructed by tihesesary. For each
p; € SR U S the adversary decides (without seejm(s input) whetherp, sends
TP his input or a default value frofii (e.g.,0). TP denotes the received values|by
T, ...

2. TP computeg (x},...,z}) = (y1,--.,ys) (if fisrandomized then TP internally
generates the necessary random coins). For paeh’H U S U A, TP sendsy;
to p;.

3. Forp; € RUSR, TP asks the adversary;if should receive his outpyt (without
revealing any information abouyt), if the answer is yes then TP senglsto p;,
otherwise it sends nothing 9.

Definition 1. We say that a protocadll (t,,?,,t.,)-securelyevaluates the functioyf

if IT securely realizes the functionali§FEin the presence of an adversary who can
actively, receive-omission, and send-omission corruptioup, t,, andt, players, re-
spectively.

4 Engineering the Network — Authenticated Channels

A source of difficulties in designing protocols toleratingth active cheaters and omis-
sions is that a playey; who receivesL when expecting a message from a playger
cannot decide whether; is send-omission or actively corrupted, or himself (i),
is receive-omission corrupted. In [Koo06] the followingesgiht-forward approach was
taken in order to overcome this difficulty in the contextigfsharing a secret: Every
player complains when he received no share from the dealéf more players com-
plain than the number of potentially corrupted playersis disqualified. Otherwise,
the players who did not complain pairwise check the conscstef their shares (as
in [BGW88, FHM98]), where inconsistencies are publiclyosgpd and resolved by the
dealer. This approach, however, leads to thresholds onuimbar of actively and (full)
omission corrupted players which are far from optimal, asdssed in the introduction.

Our approach is different. We deal with this difficulty oulsithe protocol, on
the network level. In particular, using the paradigm of l@gecommunication (e.g.,
the OSI-model), first we engineer the actual network to gedva network-layer with
stronger guarantees, and then we invoke the actual prodbweolkhis layer.

The protocol which is used to build the new network-layeraied FixReceive. It
works on the channels of the actual network (the lowest Jayeer, the secure channels
with omissions, and builds on top of them a networkaothenticatecthannels (the
higher layer), where for any receive-omission corruptethe adversary has to choose
eitherto allowp; to receive all messages that are sent to dirto let p; know that he is
receive-omission corrupted. More precisdlixReceive guarantees that when somg

Realistic Failures in Secure Multi-Party Computation 8

sends a messageto a receive-omission corrupted then eithep; receives it, as if he
were uncorrupted, g; finds out that he is receive-omission corrupted (and bec@ames
zombie). Ifp; becomes a zombie FixReceive then he notifies eveny, € P about this

by sending a bilateral message; this information will bedulsg the players in future
invocations offFixReceive. The protocolFixReceive is described in the following. For
the proof of the lemma we refer to the full version of this pape

Protocol FixReceive (P, to,tp, to, Piy Djy X)

1. p; sends his input to everyp;, € P.

2. Eachp,, € P forwardsz to p; (if py received no value, he sends a special symbol
“n/V" to p;); p; denotes the received value ag (if p, has become a zombie |n
the past thep; setsz;, = “n/v").

3. If {pr : zx e FU{"N\V"}}| < n—t, —t, thenp; becomes zombie (and notifies
all players). Otherwise, if there exists ¢ {L,“n/v"} such thatl{py : zx =
x'}| > t, thenp; outputsz’, otherwisep,; outputs.L.

Lemma 2. If 3t, + t, + t, < |P|, protocolFixReceive has the following properties.
If p; is alive at the end of the protocol then he outputs a valyevherez’ € {z, L}
unlessp;, € A, andz’ = x whenp, € H U R. Moreover,p; might become a zombie
only wherp; € R U SR and when he becomes a zombie every player notices.

Proof. p; becomes a zombie only when he receives —t, —t, values infFu{“n/v"},

in which case he is receive-omission corrupted. Assumepthainot actively corrupted:
Because at most thig actively corrupted players might send # z to p;, p; never
outputse’ ¢ {z, L}. Whenp, € RU™H is at most receive-omission corrupted each non
actively corruptegb;, receives avaluey, € {z, L} in Step 1, where =1 only whenpy,

is receive-omission corrupted. Hence, in that case; ieceives at least — ¢, — t, >

2tq + t, values inF U {“n/v"} then at most, + t, of them are not:, which implies
that more than, of them arer and therefore’’ = x. O

5 Byzantine Agreement

In this section we build primitives solving the Byzantine rdAgment (BA) problem,
which we will later use as tools for constructing the main §f&tocol. BA comes in
two flavors, namelgxonsensuandbroadcast Informally, consensus guarantees that
players, each holding an input, can decide on a common oytpberey = x if all
non-actively corrupted players had (the same) inpu®n the other hand, broadcast
allows a dedicated playet holding inputz,, to consistently send, to every player.

In our BA protocols, the players communicate over the stifeeiged authenticated
network which is constructed usirigixReceive. More precisely, whenever, € P is
instructed to bilaterally send a messagefae P, the protocoFixReceive is invoked.
Because alive players might become zombies only wiltifReceive, all the designed
protocols have the following propert@nly receive-omission corrupted players might
become zombie$he proofs of the lemmas can be found in the full version ofideer.

Realistic Failures in Secure Multi-Party Computation 9

5.1 Consensus

For constructing a consensus protocol, we use the stangardach [BGP89, FMO0O]:
We construct weaker consensus primitives, and then conmtpesein a clever way to
construct the desired consensus primitive. We construeetBuch weaker primitives
calledWeak Consensus, Graded ConsenangKing Consensus

Weak Consensus.Informally, weak consensus guarantees that there are oo$is:
tencies among the outputs of the non-actively corruptegepta but some of them (even
alive) might have no output (we say that they outpyit However, we get the guarantee
that if the playersgpre-agreedon some value;, i.e., all non-actively corrupted players
had input (the same), then we gefpost-agreemendn z, i.e., all non-actively cor-
rupted players output.® In the following we describe protocVeakConsensus which
achieves weak consensus in our model. The input of paehP is denoted as;

Protocol WeakConsensus (P, tq, tps to, @ = (T1,...,%y))
1. Eachp; € P sendsz; to everyp; € P, by invoking FixReceive; p; denotes the
received value by .
2. Eachp; € P sets
w it ({pi: 2 =a}| >n—ty—ts —t,) A
yj = ({pi : 2 & {2, LY} < ta)
L, otherwise

Lemma 3. If 3t, +t, + t, < |P|, the protocolWeakConsensus has the following
properties. Weak Consistency: Every (aligg) € P \ A outputsy; € {2/, L} for
somez’ € TF. Correctness: If everyp; € P\ A who is alive at the beginning of
WeakConsensus has inputr; = x, thenz’ = x.

Proof. (weak consistency) Assume that somec P \ A outputsy; = =’ € F. We
show that, in this case, any (alive) € P \ A outputsy, € {a/, L}. Indeed, as
p; outputsz’ he received a value not ifiz, L} from at mostt, players. Among the
remaining> n — ¢, players at most, + t, + ¢, might be corrupted, hence at least
n—2t, —t, —t, > t, are uncorrupted and sentalso topy; thereforey,, ¢ F \ {z'},
i.e., yr € {a/, L}. (correctness) Every; € P \ A who is alive at the end of the
protocol receives the value from at least all uncorrupted players (i.6p; : =i’ =
z}| >n—t,—t,—t,)and avalue notifz, L} only from actively corrupted players
and, therefore, outputg = =. O

Graded Consensus.In Graded Consensus eaghe P outputs a paily;, g;), where
y; IS p;'s actual output-value angi € {0,1} is a bit, calledp;’s grade The gradey;
has the meaning of the confidence levebpbn the fact that all non-actively corrupted
players also outpuy;. In particular, ifg; = 1 for some non-actively corrupted then
y; = y; for every (alive) non-actively corrupteg; € P. Moreover, when the non-
actively corrupted players pre-agreed on a vatuthen they all output with gradel.

9 Recall that the zombies send no values in any protocol argiveoo output.

Realistic Failures in Secure Multi-Party Computation 10

In the following we describe the protocGlradedConsensus. The idea is to have
the players first invoke the protocdleak Consensus and then exchange their outputs of
WeakConsensus to decide on the actual output and the corresponding grade.

Protocol GradedConsensus (P, ta,tp,to, & = (T1,.++,Tn))
1. InvokeWeakConsensus (P, tq,t,,ts, 2); p; denotes his output by,
2. Eachp; € P sendst] to everyp; € P by invocation ofFixReceive; p; denotes the
received value by:".
x ,ifthere existsr € F s.t. [{p; : 2}’ = x}| > t,

3. Eachp; € P setsy; := {0 otherwise

1, if (H{pi: x;> c {yj,J_}}_| >n—t,) N
and setg); := ({pi: 2 =y}l 2n—ta—t, —to)
0 , otherwise

Lemma 4. If 3t,+t,+t, < |P|, protocolGradedConsensus has the following proper-
ties. Graded Consistency: If some e P\ A outputs(y;, g;) = (y, 1) for somey € I,
then every (alivep, € P \ A outputs(yx, gx) = (v, gx), whereg, € {0,1}. Graded
Correctness: If every; € P\ A who is alive at the beginning &@radedConsensus has
inputz; = x, then every (alivep,; € P\ A outputs(y,, g;) = (x,1).

Proof. (graded consistency) Assume that sopre= P \ A outputs(y;,g;) = (y,1)
for somey € F. We show that in Step 2 any (alive) non actively corrupigdeceives
y more thant, times, and receives somg € F such thaty’ # y at mostt, times,
hencep,, also outputg;, = y. In deed, ap; outputy with gradel, he received a value
in {y, L} from > n — t, players, out of which> n — t, — (t, + t, +1t,) > t, are
uncorrupted and septalso top, (uncorrupted players never send. But, since at least
one uncorrupted player septas his output ofVeakConsensus, the weak consistency
property guarantees that only actively corrupted (ket,) players might send a value
y' & {y, L}tops. (graded correctness): Assume that eyerg P\.Awho s alive at the
beginning ofGradedConsensus has inputz; = z. Then by the correctness property of
WeakConsensus every non-actively corruptegl outputsz; = z in Step 1, hence each
pj getsavalue ifz, L} atleasti—t, times and gets the valueat leastv— ¢, —t, — ¢,
times (i.e., from at least all uncorrupted players) andef@e outputs: with gradel.

O

King Consensus.In King Consensus there is a distinguished playee P, called the
king. King Consensus guarantees that if the king is uncorrupiteah, all non-actively
corrupted players output the same value. Additionallyepehdent of the king’s cor-
ruption, if the non-actively corrupted players pre-agreeda valuex, then they all
outputx. The protocoKingConsensus (see next page) is described in the following.

Lemma. If 3t, + t, + t, < |P], the protocolKingConsensus has the following
properties. King Consistency: If the king is uncorrupted, then everny; € P\ A
outputsy; = y. Correctness: If every; € P \ A who is alive at the beginning of
KingConsensus has inputr; = « then they all outpuy = =.

Realistic Failures in Secure Multi-Party Computation 11

Protocol KingConsensus (P, tq,tp, to, @ = (T1,...,%n), Pk)
1. InvokeGradedConsensus(P, tq, %), to,); p; denotes his output bie?, g;).
2. The kingpy, sendsr), to everyp; € P by invocation offFixReceive.
3. Eachp; € P sets
by {x; if (g; = 1) or (px sentz, =1)
' x}, , otherwise

Proof. (king consistency) Assume that the kipg is uncorrupted. We consider two
cases: (1) Every; € P\ A who is alive at the end d&radedConsensus (Step 1) has
gradeg; = 0, and (2) some; € P\ A outputs(y;, g;) = (v, 1) in GradedConsensus.

In both cases the king;, consistently sends his outpuf of GradedConsensus to all
players. Therefore, In Case 1 everyc P \ A adopt this value, whereas in Case 2 the
graded consistency &radedConsensus guarantees that evepy € P \ A (including
the king) outputyy, g¢) = (z,-) in GradedConsensus and it is irrelevant whether or not
they adopt the king’s input. (correctness) If all (alive)nractively corrupted players
have the same input then by the correctness property GfadedConsensus all non
actively corrupted players outputwith gradel in Step 1 and stick to this output. O

Consensus. Building a consensus protocol from king consensus is sitdigrward:
InvokeKingConsensus with ¢, + ¢, 4 t, + 1 different players as king, where the input
of thei-th iteration is the output of th@ — 1)-th iteration. As there are at mast+t,+

t, corrupted players, at least one of the kings will be uncagdphence consistency
on the output value will be achieved in the correspondingiten; the correctness of
KingConsensus guarantees that this value will not be changed in any futieration.
Note that when we have pre-agreement on some value therstamsy on this value is
achieved from the first iteration independent of the king.

Lemma 6. If 3t,+t,+t, < |P|, the protocolConsensus has the following properties.
Consistency: All (alivep; € P \ A output (the same) € F. Correctness: If every
p; € P\ Awho is alive at the beginning @onsensus has inputz; = z theny = x.

Proof. (correctness) By the correctness propertKafgConsensus, if all alive players
have the same input, then at the end of each iteration dlldktie) non actively cor-
rupted players output (the sameand enter the next iteration with this Therefore, at
the end, all synchronized players outpuiconsistency) A«KingConsensus is invoked
with t, +t, + t, + 1 different kings, at least one of them, saywill be uncorrupted,
hence by the king-consistency property, at the end of thatite of KingConsensus
with king py. all players output the same valyeBy the correctness dfingConsensus,
the agreement op will be maintained until the end of the protocol. a

5.2 Broadcast

The standard approach for achieving broadcast when conséngiven, is to have the
sendelp; send his input to every player, and then run consensus ortieé/ed values.
Unfortunately, this generic approach does not work in ottirgg as it provides no guar-
antees when a send-omission corrugigdails to send his input to some uncorrupted
players.

Realistic Failures in Secure Multi-Party Computation 12

To guarantee that a non actively corruptgaever broadcasts a wrong value we ex-
tend the above generic protocol by adding the following stgpsends a confirmation
bit to every player, i.e., a bit whereb = 1 if p, agrees with the output of the consen-
sus and = 0 otherwise; subsequently, the players invoke consensukeoreteived
bits to establish a consistent view on the confirmationtit they accept the output of
the generic broadcast protocol only if this bit equbl®therwise they output.. This
results in the protocdBroadcast (see next page).

Protocol Broadcast (P, ta, tp, to, Ps,)

1. ps sendse to everyp; € P (by FixReceive), who denotes the received value:by
(z; = 0if p; receivedL).

. The players invok€onsensus on the received values. Lg} denotep;’s output.

. Eachp; sendsy; to p, (by FixReceive).

4. ps sends a confirmation bit to everyp;, € P (by FixReceive), whereb = 1 if
ps receivedy; = x from more thatt, players in the previous step amd= 0
otherwise)p,; denotes the received bit by (b; = 0 if p; receivedl).

5. InvokeConsensus (P, tq, to, tp, (b1,...,by)). For eachp, € P, if p;’s output in
Consensus is 1 thenp; outputsy;, otherwise he outputs.

w N

Lemma?7. If 3t, +t, +t, < |P|, protocol Broadcast has the following properties.
Consistency: All (alivep; € P \ A output the (same) valug, = y. Correctness:

y € {z, L} whenp; € P\ A, wherey = 2 whenp, € H U R and he is alive at the
end of the protocol, ang =1 whenp, has been a zombie from the beginning of the
protocol.

Proof. (consistency) Consistency of the output is guaranteed dgdmsistency prop-
erty of Consensus. Indeed, when the invocation @onsensus in Step 5 output$ then
every (alive)p; € P\ A outputsL; otherwise every,; € P\ A outputsy;, wherey;

is p;’s output in the invocation ofonsensus in Step 2. (correctness) When has been

a zombie from the beginning of the protocol, then in Step 4e@ive)p, € P\ A
setsh; = 0, and, by the correctness property@lnsensus, everyp; € P \ A outputs

0 in Consensus (in Step 5), and therefore outputsin Broadcast. Assume for the re-
maining of the proof thap, € P \ A and he is alive at the beginning of the protocol.
Whenp,; € HUR, then by inspection of the protocol it is easy to verify tha butput
of Broadcast will be z. It remains to be shown that when € S U SR then the output
is in {z, L}: We consider the following two cases: (%) becomes a zombie before
the execution of Step 4, and (®) is alive at the beginning of Step 4. In Case 1 every
(alive)p; € P\ A setsh; = 0 hence, by correctness Gbnsensus in Step 5, the output
will be L. For Case 2, if the corregt;’s outputy; = « in Step 2 then the output of
Broadcast will be x or | depending on whether the output©&nsensus in Step 5 is

1 or 0, respectively; otherwise, in Stepp4 receives at mosgi, timesz (i.e., only from
the corrupted players) and therefore setidsr 1) to everyp; in which case the output
of Broadcast will be L. O

Realistic Failures in Secure Multi-Party Computation 13

6 Tools

In this section we describe sub-protocols that will be usedbailding-blocks in the

construction of the main SFE and MPC protocols. Some of thepsatocols are non-
robust, and might abort with a non-empty ¢eC P. When they abort, then all (alive)
players inP notice it and they also learn the sBt As in the case of BA, some alive
players might become zombies during the invocation of the motocols, but only

when they are receive-omission corrupted.

6.1 Secret Sharing

A secret sharing scheme allows a player, calleddibader, to distribute his input among
the players in some player sBt so that only qualified sets of players can reconstruct
it. As usual in the threshold adversary literature, we usansihsharings for sharing
values: With eachp; € P a unique publicly knowny; € F is associated. A secret

is t-sharedamong the players if® when there exists a degregolynomialg(-) with

q(0) = s, and every non actively corruptgd € P holdss; € {q(«;), L}, where

s; = q(a;) unlessp; is receive-omission corrupted. The valyds p;'s shareof s. We
refer to the vector of shares, denoted(by = (s1, ..., s,), as at-sharing of s.

We say thats) is at-consistensharing ofs among the players i® if there exists
a degree:polynomialg(-) such that each non actively corruptede P holds share
si € {q(a;), L}. We say thats) is at-valid sharing ofs among the players i@, if (s)
is t-consistent and for some degrepelynomialg(-) with ¢(0) = s, each uncorrupted
p; € P holds share; = q(«;).

ProtocolShare allows a dealep to ¢-share his input among the players in anyBet
Essentially it is a passive Shamir-sharing protogopicks a degree-uniformly ran-
dom polynomialy(-) and sendg(«;) to p;. The following lemma states the achieved
security.

Lemma 8. ProtocolShare(P, ¢, p, s) has the following properties. Correctness: When
p € P\ A thenShare outputs ai-consistent sharings) of s among the players i,
where(s) is eveni-valid unlesp € AU S U SR or unlessp is a zombie. Privacy: The
players in any seP’ C P with |P’| < t get no (joint) information ors.

Proof. (correctness) When € P \ A then he correctly computes the shares according
to some degreé-polynomialq(-), therefore everyp, € P \ A gets eitherg(a;) or

1, and(s) is at-consistent sharing of. When, additionallyp ¢ AU S U SR, i.e.,

p € HUR, then only receive-omission corrupted players might noenee their share,
therefore(s) is t-valid. (privacy) As the sharing-polynomia(-) is a uniformly random
polynomial of degree, anyt points on it give no information about ad

In the following we describe the protocdtablicReconstruct andReconstruct used
to reconstruct a shared value publicly and towards someubplpyerp, respectively.
The protocols take as input a sharing of a value among the@ay somé>’ (P’ might
be different thar). In protocolReconstruct (resp.PublicReconstruct) everyp; € P’
sends his share o (resp. broadcasts his share®) and therp (resp. every; € P)
reconstructs the shared value using standard error came&ue to their similarity we

Realistic Failures in Secure Multi-Party Computation 14

only describe protocdReconstruct and state the security of both protocols in a joint
lemma.

Protocol Reconstruct (P’, t, ', p, (s))
1. Eachp; € P’ sends his share to p.
2. pfinds, using standard polynomial interpolation technigaetegree polynomial
/() with the property that more than+ ¢’ of the received shares lie of(-) and
outputss’ = f(0). If no such polynomial exists thes} outputsL.

Lemma 9. Assume that there existssuch that there are at most corrupted players
in P/, of whom at most’ are actively corrupted and the conditidnt+ ¢ + ¢, < |P’|
holds. Then the protoc®econstruct (resp.PublicReconstruct)*? reconstructs a value
s’ towards playerp (resp. towards every; € P), wheres’ € {s, L} if (s) is at-
consistent sharing of among the players i?’, ands’ = s if (s) is ¢t-valid.

Proof. The interpolation algorithm in Step 2 outputs = f(0) for some degree
polynomial f(+), if and only if the values sent by more thar- ¢’ players lie onf (-).

As non actively corrupted players never sends wrong vathesimplies that the shares
of more thant non actively corrupted players lie gf{-). Hence, if(s) is at-consistent
sharing ofs, i.e., there exists a degregolynomialg(-) with ¢(0) = s such that each
non actively corruptegh; € P holds shares; € {q(«;), L}, then clearlyg(:) = f(-).
When in addition(s) is ¢-valid then all uncorrupted players hold shares that lie on
f(). Ast+t' +t. < |P'|, and at most. players are corrupted, there are more than
t 4+t uncorrupted players who correctly send their share an@tber the interpolation
algorithm outputsf (0) = s. O

6.2 Engineering the network - Secure Channels

The trick of engineering the network allowed us to reduceefffiect of receive-omission
corruption. However, because the channels which we aclpiexede no privacy guar-
antees, we cannot use the resulting network directly tataugerfectly secure SFE pro-
tocol. In the following, we show how to engineer the initigtwork of secure channels
to get a new network-layer (also of secure channels) witingter security guarantees.
The new network layer will allow any; € P who receivesL instead of a message
x fromp; € P to decide whether he (i.e,) is receive-omission corrupted or the sender
p; is corrupted. Additionally, when the reception fails besawfp;, then every (alive)
player will recognize thap; is (actively or send-omission) corrupted. GivBroadcast
and a uniformly random key; ; € IF known exclusively top; andp;, this can be
achieved as follows: Fay; to privately sends to p;, p; usesk; ; as a one time pad to
perfectly blinds, and broadcasts the blinded valsie- k; ;. Because only; andp;
know k; ;, only p; can unblind the broadcasted message and any other plagenget
information about it. As syntactic sugar, we denote thidquol asPrivBroadcast.

19 For PublicReconstruct we need to assume a broadcast primitive, which witgn-t, 4+, <
|P| we can instantiate bBroadcast.

Realistic Failures in Secure Multi-Party Computation 15

In the remaining of this section we concentrate on enabkvy playersp; and
p; to establish a secret kefy; ; (to use inPrivBroadcast). We design two proto-
cols, calledWeakExchangeKey and ExchangeKey, which achieve the following:
WeakExchangeKey uses the bilateral secure channels and allows anyppais € P
to exchange a key as long ase of thenis at most receive-omission corrupted (i.e.,
is in H U R) andthe other oneis at most send-omission corrupted (i.e., isHUJ S).
ProtocolExchangeKey uses protocol$VeakExchangeKey andBroadcast and allows
p; andp; to exchange a key, even wheach of thenis eitherat most receive-omission
or at most send-omission corrupted. Both protocols work inlaliply detectable way,
i.e., all (alive) players notice whether or not the key-eaage worked. In the following
we describe the protocoWeakExchangeKey andExchangeKey in more detail.

ProtocolWeakExchangeKey is based on the observation that whegns at most
send-omission ang; is at most receive-omission corrupted, thgncan always se-
curely send messagesppthrough the bilateral secure channel. The protocol works as
follows: p; andp; choose uniformly random valués € F andk; € I, respectively,
and exchange them over their bilateral channel. Subselyueath of them publicly
announces, bBroadcast, whether or not he received a value from the other. If any of
them confirms reception of a value then this value is used eselret key and the
protocol succeeds; otherwise the protocol fail&akExchangeKey is non-robust and
might abort with a seB € {{p;}, {p;}}, but only whenp; and/orp; broadcastL (if
they both broadcast take the one with the smallest index). The detailed deseoript
of WeakExchangeKey and the proof of the following lemma can be found in the full
version.

Protocol WeakExchangeKey (P,tq,ts,to, Pi; Dj)

1. p; andp; pick valuesk; € F andk; € I, respectively, uniformly at random.

2. p; andp; exchange the valuds andk; (over the bilateral channel).

3. Each of the players; andp; broadcasts “ok” if he received a valdg andk;,
respectively, from the other player and “not ok” otherwise.

4. (output): All players outputuccess if any of the playerg, andp; broadcasted
“ok” and they outpuf ai | ur e, otherwise. When the output 8uccess, then
both p; andp; additionally outputk; if p; broadcasted “ok” in Step 3, ankl
otherwise.

5. If p; or p; broadcastsl in any step of the protocol then the protocol aborts with
B = {p/}, wherep, € {p;,p;} is the one with the smaller index among the
players who broadcast.

Lemma 10. If 3¢, + t, + t, < |P|, protocol WeakExchangeKey has the following
properties. Correctness: Either it succeedgjrandp; exchanging a uniformly random
keyk, oritfails, or it aborts with se3 € {{p;}, {p;}}. It might abort withB only when
B CRUSUSR U .A. When it does not abort then the following hold: (1) Everyali
pi € P sees whether the protocol succeeded or failed, and (2) agdwucceeds when
p; € HUR andp; € H U S orvice versa (i.e., whep; € HU S andp; € HUR).
Privacy: The adversary gets no information e{unless; or p; is actively corrupted).

Proof. First observe that conditioBt, + ¢, + t, < n is sufficient for protocol
Broadcast. (correctness)VeakExchangeKey aborts withB = {p,} only whenp,

Realistic Failures in Secure Multi-Party Computation 16

broadcastd. in some step, in which case the correctness propemyafdcast ensures
thatp, € S U SR U A. When the protocol does not abort, i.e., bptlandp; broadcast
a value in{“ok”,“not ok} in Step 3, then whep, € H UR andp; € HUS, p;
receives the key; from p; and broadcasts “ok”, therefore the protocol cannot fa (th
casep; € HUR andp; € H U S is handled symmetrically). (privacy) Privacy follows
trivially from the the perfect privacy of the bilateral chagils. a

We describe the protocdixchangeKey (see below) and state its achieved se-
curity in a lemma. The protocol is non-robust and might abwith set B €
{{pi},{p;}. {pi,p;}}. However, from the fact that it aborted the players can deduc
useful information on the corruption of the playersin

Protocol ExchangeKey (P, tq, pi, p;)

1. For ¢ € {i,j}: pe invokes WeakExchangeKey with every p, € P. If
WeakExchangeKey aborts withB, thenExchangeKey also aborts with3. Denote
by P C P the set of players who successfully exchanged keys witland by
Poc:= (P N Pﬁk) If | Por | < 2t, thenExchangeKey aborts withB = {p;,p;}.

2. For?¢ € {i,j}: pe picks a valuek, €r F uniformly at random and a degree
t,, random polynomialf,(-) with f¢(0) = k.. For eachp, € Pa, p, sends, by
invoking PrivBroadcast with the exchanged keys, the shgfda,.) to p,, who
denotes the received value &$. If p, broadcastl then ExchangeKey aborts
with B = {p,} (if both p; andp, broadcastL take the one with the smallest
index).

3. The players inP compute a sharing of the sum + k;, by each player (lor
cally) adding his shares, and then publicly reconstrucy iPbblicReconstruct. If
PublicReconstruct outputs L thenExchangeKey aborts withB = {p;, p,;}. Oth-
erwise, bothp; andp; takek; to be their shared key.

Lemma 11. If 3¢, +t, +t, < |P], the protocoExchangeKey has the following prop-
erties. Correctness: Eithgr; andp; succeed in exchanging a uniformly random key
(and all players notice) or the protocol aborts with a g&tc {{p;}, {p;}. {p:,p;}}. It
might abort with setB only if one of the following two cases holds: (B| = 1 and
BCRUSUSRUAand (2)|B] =2andBnN (SRUA) # (. Privacy: The adversary
gets no information ok (unlessp; or p; is actively corrupted).

6.3 ProtocolSFE(BO)

The last tool is a protocol, callegFE(B®) | which perfectly securely evaluates any given
function f without fairness but with unanimous abort [GL0Z2]. In pautar, protocol
SFE(BO) either perfectly(t,, t,,ts)-securely evaluates the functigior it aborts with
setB € {{p:},{p;},{pi,p;}} for somep,,p; € P. The adversary might force the pro-
tocol to abort even after receiving the outputs of activedyrapted players. However,
when it aborts every player learns useful information aloecorruption of the players
in B.

Realistic Failures in Secure Multi-Party Computation 17

The idea is the following: Lefl» ;(-) denote a protocol which perfectysecurely
evaluates any given function, in the presence of an adwevgao can (only) actively
corruptup tat playerst! Such a protocol is known to existdt < n [BGW88]. Also, let
C'y denote the arithmetic circuit which computes a given fuorcif. To securely eval-
uateC's, protocolSFE(B®) invokes protocolTp ;(C) over the engineered network of
secure channels. More precisely, eache P executes the instructions éfp +(Cy)
with the following modification: whenever; is instructed to bilaterally send a message
x to somep; € P, protocolExchangeKey(P, p;,p;) is invoked to have; andp; ex-
change a uniformly random key, and then the messagesent usingPrivBroadcast
with the established key; whenevgris instructed to broadcast a message, he invokes
Broadcast. If some invocation oExchangeKey aborts withB or somep; € P broad-
castsL (in this case we se® = {p;}) thenSFE(EC) aborts withB3.

In the following lemma we state the securitySFE(BC). The proof follows directly
from the perfectt-security of protocollI ,(-) and the perfect security of protocols
ExchangeKey andBroadcast. SFE(B) is parametrized by a single threshold, namely
but it assumes as given the primiti@sadcast andExchangeKey as specified in Lem-
mas 7 and 11, respectivel§.

Lemma 12. GivenBroadcast andExchangeKey, assuming that the conditid < |P|
holds protocolSFE(B®) (P, ¢, C}) has the following properties. Correctness: Either it
perfectly (¢, t,,t,)-securely evaluates the circuit; among the players ifP for any
ts,t, < n,Orit aborts with a setB C P. It might abort with set3 only when one of
the following two cases holds: (1| =1andB C RUSUSRU Aand (2)|B| =2
andB N (SR UA) # (). Privacy: The adversary does not get no more informatiomtha
what he can compute from the specified inputs and outputgigéccorrupted players
(i.e., from the inputs and outputs she should get when thegubdoes not abort).

7 SFE

In this section we prove the necessary and sufficient canditr perfectly(t,,t,, t)-
securely evaluating any given functigif-), namely we prove the following theorem:

Theorem 1. Perfectly(t,. t,, t,)-secure SFE is possible if and onlgif,+¢,+t, < n.

The necessity of the condition follows, with some additiomark, from the neces-
sity of the conditionst, < n for SFE [BGW88]; we state the necessity in the following
lemma which is proved in the full version of this paper.

Lemma 13. If 3t, + t, + t, > n then there are functions which cannot be perfectly
(ta,tp, ts)-securely evaluated.

™ Here, t-secure evaluation is according to any of the standard ieaefinition (with fair-
ness and guaranteed output delivery) of protocols tolegain active-only adversary [MR91,
Can00, DM00, BPWO03].

12n slight abuse of notation here, we wriBroadcast and ExchangeKey to refernot to the
protocols but to primitives achieving the security spedifie Lemmas 7 and 11 (independent
of pre-conditions). To be able to instantiate them with awtgcols we will have to guarantee
that the pre-conditions of the lemmas are satisfied.

Realistic Failures in Secure Multi-Party Computation 18

Proof. We show that wheft, +¢, + ¢, > n then BA among players is not possible.
Towards contradiction assume ti$at, + ¢, + ¢, > n and there is a BA protocol which
is perfectly(t,, t,, t,)-secure among playerspi, ..., p,. Itis easy to verify that this
protocol should also be perfectty-secure among — ¢, — t,, players, by considering
an adversary who send-omission corrupts the playgers. ., p:, and receive omission
corruptthe playerg;, 11, ..., pt,+t,, and drops all incoming (resp. outgoing) commu-
nication of the receive-omission (resp. send-omissiomuged players . However, as
n—t, —t, < 3t, such a protocol cannot exist [BGW88]. a

The sufficiency is proved by constructing an SFE protocotfmmputing any given
function f. For simplicity, we assume thgt takes one input per player and has one
global output. Using standard techniques, we can obtaint@gol for computing func-
tions with multiple inputs and/or multiple or even privatetputs.

On a high level, the evaluation of the functigmproceeds in three stages: In the first
stage, called thmput stageeveryp,; € P t,-shares his input to the playersih Next,
in the computation stagethe players us8FE(B®) to compute a random,-sharing of
the output of the functiorf. Finally, in theoutput stagethis sharing is reconstructed
towards every player usingeconstruct. In the remaining of this section we describe in
detail the three stages, and give a detailed descriptionoddpol SFE.

The input stage In this stage protocdhare is invoked to have each;, € P t,-share

his inputs® to the players ir°. Denote the resulting sharing by®). The security of

Share guarantees that for any non actively corruppeds) is at,-consistent sharing
of st, where(s) is event-valid whenp, € H U R.

The computation stage The goal is to securely compute, usi®BE (), a uniformly
randomt,-valid sharingof the output off on input the values that where shared in the
input stage. This stage is non-robust and might abort wittagep setB C P, when
SFE(BO aborts withB. When it aborts, the players use the information about the se
B, which is provided by Lemma 12, to repeat this stage in a @nséitting, i.e., among
the players inP’ := P \ B. The security ofSFE(BC) guarantees that, even when it
aborts, the adversary learns at most the outputs of acto@iyupted players, which,
as they are shares of a (uniformly randotypsharing, give her no information on the
input-sharings. Hence, in the successful iteratiofife# (B©), both the inputs of actively
corrupted players and the decision of which send-omissiorupted players give their
inputs are independent of the inputs of non actively coedgtiayers.

Initially P’ := P andt!, := t,. ProtocolSFE(B%) is invoked with player seP’ and
thresholdt/,, to compute the circui€’; ¢, which does the followingC'¢, takes as input
from eachp; € P’ his share of each of the input-sharings>), ..., (st). For each
such sharings®): C\f, attempts, exactly as in protocBeconstruct, to reconstruct
the shared value; if the reconstruction succeeds it $ets the reconstructed value,
otherwise it set$; to a default value (e.gs$; := 0). Note that fort = ¢/,,¢' = ¢/, and
t. = t,, + to + t, all the sufficient conditions foReconstruct are satisfied; therefore,
Of_‘;) correctly reconstructs the input of evepy € H U R (which is ¢-valid), and for
everyp; € S U SR it either reconstruct;’s input or it takes a default value (since
the sharing ofp; is a t-consistent sharing of his input). Having computed the eslu

Realistic Failures in Secure Multi-Party Computation 19

81,...,5n, 4, inputs them to the circuit computing denote the output by. Finally,
C/s, computes and outputs a uniformly randegrvalid sharing ofy among the players
in P’. We point out that the circui€(? can be efficiently computed from the circuit
which computes the functiof [IKLPO6].

To be able to re-invok8FEE®) in P’ = P’ \ B when it aborts with3, we need to
guarantee that in the updat@d: (1) the conditior¢,, < |P’|, which is sufficient for
SFE(B9), holds and (2) no inputs of non actively corrupted playeeslast. To ensure
Property (1), we use the ideajpiayer eliminatiofHMPO00]:13 The security o6FE(BC)
guarantees that when it aborts with #&tthen eithefB| = 1andB C RUSUSRUA
or|B| =2andBnN(SRU.A) # . Therefore, by eliminating the players Bwe might
only change the ratio of uncorrupted vs. actively corrugtkgers inP’ in favor of the
uncorrupted players. However, as theBebecomes smaller, the players might have to
reduce the actual threshald To be on the safe sidé, is reduced only when at least as
many players as there can be send-/receive-omission ¢ediyave been eliminated.
Property (2) is guaranteed because, first, theonsistency and,-validity of input
sharings cannot be destroyed by deleting players and, dettoanewly computed,
satisfies, as we show, the sufficient conditionRetonstruct.

The output stage The players invokdReconstruct with the (latest)/, to reconstruct
the sharing created in the successful iteratiofifef(B©) . Because the protoc6FE(EC)
outputs &,-valid sharing of the output, and, as we will shajysatisfies the sufficient
condition for protocoReconstruct, the reconstruction is robust. For completeness we
describe the protocdFE (see below) and state the achieved security in the follow-
ing lemma.

Protocol SFE (P, ta,tp, to, f)
0. SetP’ := P, andt,, :=t,.
1. For eaclp; € P invokeShare(P, t,, p;, z;). Eachp; € P denotes the vector of all

shares he received by’ .

2. The players inP’ invoke SFE(BO (P’ ¢ Cis),where eactp;, € P’ has in-
putz 2 If SFE(BO) aborts with B, then setP’ = P’ \ B, sett, := t, —
max{0, (W}} and repeat this step; otherwise denotg pythe out-
put sharing.

3. For eactp; € P invokeReconstruct(P’, tq, t,,, pj, (f)).

& The required invocations @roadcast andExchangeKey are done in the player sét.

Lemma 14. ProtocolSFE is perfectly(,, t,, t,)-secure ifdt, + t, + t, < |P].

Proof (sketch)Termination is guaranteed because Step 2 is repeated atJrast+¢,
times (in each repetition at least one corrupted playensored fromP’). Correctness
follows from the security of the invoked sub-protocols; les@r one needs to verify that

3 To our knowledge, this is the first work which uses the idea laf@r elimination not for
improving efficiency but rather for arguing about feastilyilbf protocols.

Realistic Failures in Secure Multi-Party Computation 20

the corresponding sufficient conditions hold whenever teyinvoked. This follows
from a player-elimination argument; for modularity of theepentation we prove this
argument separately in Proposition 1. Privacy follows dlean the security of the
invoked subprotocols and from the fact that all the sharthgswe do are of degreg
(except of those done internally §FE (%) whose privacy is guaranteed by the security
of SFE(BQ)), therefore they leak no information to the adversary altloinputs. O

Proposition 1. If 3¢, +t, +t, < nthen all the sufficient conditions for the invocation
of every sub-protocols withi&FE are satisfied.

Proof. The security of the protocolBroadcast and ExchangeKey which are invoked
in SFE(BY) is guaranteed, as they are always run in the playePsate show that’,,

as computed in Step 2, satisfies the sufficient conditionSF&E<) andReconstruct.
Consider the iteration in the player 8t C P; denote by = P \ P’ the set of elim-
inated players. We argue thét := ¢, — max{0, dc}, whereds = [W], is

a choice satisfying the conditions of Lemmas 9 and 12. Iniqdsr, we show that/,
satisfies the following properties: (&) is an upper bound to the number of actively cor-
rupted players, and (2) there existssuch that there are at mastcorrupted players in
P"andt, +t/,+t. < |P'| (because, < ¢, andt], < t. this also implies thatt, < |P’|
which is sufficient foSFE(B®)). Property 1 follows from a player elimination argument:
First observe that the total number of possible “corruptiperation” inP is at most
tq +ts + 1, (a corruption operation corresponds to the adversary pting a player in
exactly one type, e.g., a full-omission corrupted playeamis for two corruption oper-
ations, one for send- and one for receive-omission comaptiThe security o$FE(BC)
ensures that for each uncorrupted playe€if (R U S) there exists at least one other
playerin€\ (RUS) who is either both send- and receive-omission corruptedtrely
corrupted. As there can be at most- ¢, send-/receive-omission corruption-operation
in &, there are at leashax{0, ¢} active corruption operation iéi. Thereforet/, is an
upper bound in the number of actively corrupted playerB’inFor Property 2, we show
that it is satisfied fot. = t, +t, +t, — (|€] — t€), wheret¢ is the actual number
of actively corrupted players ii:'* First we observe that there are at lef&t — &
corruption operations i&, which implies that. is an upper bound on the number of
corruption operations irP’. Hence we only need to show that+ t, + ¢t. < |P’|.
This can be seen as follows: Because there can be atignast, send- and receive-
corruption operations if we havet! — max{0, §¢} > 0. Using these observation we
gett, +t, +t. < to+ (ta —max{0,0e}) +ta+to+t,— (€] —tE) <n—|E| = |P'],
which completes the argument. a

As already mentioned, when the adversary is rushing thertiactions that cannot
be strongly(t., t,, t,)-securely evaluated, except in trivial corruption sceos(i.e., if
t, = 0 ort, = 0). However, when the adversary is non-rushing the abovepabtan
be used to achieve strong security. Indeed, before the bstipge, the adversary gains
no useful information. As protocdteconstruct is single round, if, within the output
stage, we run it in parallel for evepy € P, then a non-rushing adversary has to choose
which receive-omission corrupted players do not get enaughsages to reconstruct

4 Note thatt is not necessarily known to the players and appears onlyeis¢curity analysis.

Realistic Failures in Secure Multi-Party Computation 21

the output before getting any information about the outphis implies strong security.
We point out that the necessity of conditidh, + ¢, + t, < n for SFE is independent
of whether or not the adversary is rushing.

Corollary 1. Assuming that the adversary in non-rushing, perfeclirongly
(ta,tp, ts)-secure SFE is possible if and o8y, +t, +t, < n.

8 Computing Reactive Circuits (MPC)

In this section we show how to compute reactive functioreajt.e., functionalities that
receive inputs from and give outputs to the players severad during the computa-
tion (an output can depend on all previous inputs). An imgarconsideration when
computing a reactive functionality, is to make sure thatplayers can keep a secret
joint state.

The circuit to be computed consists of input, output, additiand multiplication
gatest®> We model the reactiveness of the computation by assigniagch gate a point
in time in which the gate should be evaluated. The circuivaweated in a gate-by-gate
fashion, using protocdFE, where the evaluation of each gate (except for the output
gates) yields a uniformly random-valid sharing of the output of the gate among the
players inP. Keeping state is guaranteed by the fact that such a sharirapustly
reconstructible, e.g., by using protodtdconstruct, given that the conditioBt,, + ¢, +
t, < nholds (Lemma 9). The privacy of the state is guaranteed s tire at mos,
actively corrupted players.

To evaluate addition and multiplication gates, protdsiei (<) is invoked to com-
pute the circuits” 7,4y andC' 444y, respectively, which on input,-valid sharings of
the inputse; andz, of the gate output a uniformly randoty-valid sharing of the sum
x1+z2 and of the product; - z-, respectively. For an output gate, protoBetonstruct
is invoked (with?’ = P, andt = t' = ¢,) to reconstruct the shared output towards the
output player.

To evaluate an input gate, proto&HiE is invoked to evaluate the circuit, ;, which
takes as input the input of the corresponding player (andaheevfrom other players)
and computes a uniformly randampvalid sharing of it among the playersi Excep-
tionally in the evaluation of input gatesyenthe zombies are required to take part as if
they were alive. This is possible as all players (includingbies) hold synchronized
clocks, and are aware of when it is time to evaluate an inptet'§anstructing the zom-
bies to “wake up” during the evaluation of input gates ensthat every; € H U R,
even if he is a zombie, is able to give input to the computati@hen the evaluation of
the gate finishes, all zombies “sleep” again, i.e., they ptaping (until the next input
gate). The security of the MPC protocol follows from the g#guof protocolsSFE
andReconstruct.

15 This does not exclude probabilistic circuits, as a randota gan be simulated by having each
player input a random value and taking the sum of the inputie@sutput of the gate.

8 A zombie might re-become zombie during the evaluation ofitipeit gate, in which case he
gives up the evaluation of the gate.

Realistic Failures in Secure Multi-Party Computation 22

Theorem 2. Perfectly (,,t,,t,)-secure (reactive) MPC is possible if and only if
3ty +t, +1t, < n.

As in the case ofFE, when the adversary is non-rushing, then by evaluating in
parallel each tuple of output gates that are due to be eeltthe same time, we get
a strongly perfectly secure MPC protocol.

Corollary 2. Assuming that the adversary in non-rushing, perfectly reglp
(ta,t,,to)-secure (reactive) MPC is possible if an onlgif, + ¢, +t, < n.

9 (Full) Omission Corruption

Our results can be trivially used to obtain sufficient boufatsMPC and SFE in the
presence of an adversary who can full-omission corrupt up tolayers and, simulta-
neously, actively corrupted, players (as in [Koo06]). Indeed, by settihg=t, = ¢,

in our MPC protocols, we get a protocol which perfedtly, ¢,,)-securely realized any
function when3t, + 2¢, < n. Note that this bound is strictly better than the bound
3t, + 4t,, < n which was proved sufficient in [Koo06].

Lemma 15. Perfectly(t,, ¢,)-secure (even reactive) MPC is possiblgtif + 2¢,, < n.

10 Extensions

Our results can be extended to deal with adversaries whoathtitionally, passively
and fail-corrupt players; denote sy andt; the corresponding thresholds. The proof
of the following lemma is omitted, but we give some eviden€ét validity: Fail-
corruption comes almost “for free” as in our protocol a fedrrupted players behaves
exactly as a receive-omission corrupted player with the afifference that, instead
of turning him into a zombie the adversary can make him crashncorporate pas-
sive corruption we need to do the following modifications: tfie degree of the shares
that are computed iSFE is increased by,; (2) for SFE(BO) | instead of invoking, over
the engineered network, the protod®p ;(-) [BGW88] which tolerates only actively-
corruption, we use a protocol which tolerates both active passive corruption, si-
multaneously. Such a protocol is known to exis8#f, + 2¢, < n [FHM98]. These
modifications will guarantee privacy of our computation.

Lemma 16. Perfectly (t,,t,,tf,t,, ts)-secureMPC is possible if and only iBt, +
2ty +to +t,+tp <m.

Using techniques from Secure Message Transmission [DDWY¥@3 can extend
our results to allow every (even uncorrupted)e P to suffer from some message loss,
as long as we have the following guarantee: in every roundyewec H U S might
lose at most, of the messages sent to him by playgyss H U R.

Acknowledgments We would like to thank Martin Hirt for many useful discussgon
and comments.

Realistic Failures in Secure Multi-Party Computation 23

References

[Bea9la] D. Beaver. Foundations of secure interactive ectimgp. In CRYPTO '91,
LNCS 576pp. 377-391, 1991.

[Bea91lb] D. Beaver. Secure multiparty protocols and zeroakedge proof systems toler-
ating a faulty minority.Journal of Cryptology4(2):370-381, 1991.

[BGP89] P. J. Berman, J. Garray, and J. Perry. Towards optiis&ributed consensus. In
FOCS '89 pp. 410-415, 1989.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Conggiess theorems for non-
cryptographic fault-tolerant distributed computatiomSITOC '88 pp. 1-10, 1988.

[BPWO3] M. Backes, B. Pfitzmann, and M. Waidner. A univergsalbmposable crypto-
graphic library, 2003.

[Can00] R. Canetti. Security and composition of multipamyptographic protocolslour-
nal of Cryptology 13(1):143-202, 2000.

[CCD88] D. Chaum, C. Crépeau, and |. Damgard. Multipariganditionally secure proto-
cols (extended abstract). 8TOC '88 pp. 11-19, 1988.

[DDWY93] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfgcflecure message transmis-
sion. Journal of the ACM40(1):17-47, January 1993.

[DMOQ] Y. Dodis and S. Micali. Parallel reducibility for iefmation-theoretically secure
computation. ICRYPTO 2000, LNCS 1880p. 74-92, 2000.

[DS82] D. Dolev and H. R. Strong. Polynomial algorithms foultiple processor agree-
ment. INSTOC '82 pp. 401-407, 1982.

[FHM98] M. Fitzi, M. Hirt, and U. Maurer. Trading correctre$or privacy in unconditional
multi-party computation. 'CRYPTO '98, LNCS 146®p. 121-136, 1998. Cor-
rected version is available online.

[FM98] M. Fitzi and U. Maurer. Efficient Byzantine agreemesgicure against general
adversaries. IDISC '98, LNCS 149%p. 134-148, 1998.

[FMOQ] M. Fitzi and U. Maurer. From partial consistency toolgal broadcast. In
STOC 2000pp. 494-503, 2000.

[GLO2] S. Goldwasser and Y. Lindell. Secure computationhaitt agreement. In
DISC 2002, LNCS 250%p. 17-32, 2002.

[GMWS87] O. Goldreich, S. Micali, and A. Wigderson. How to plany mental game — a
completeness theorem for protocols with honest majoriysTOC '87 pp. 218—
229, 1987.

[GP92] J. A. Garay and K. J. Perry. A continuum of failure mieder distributed com-
puting. In Distributed Algorithms, 6th International Workshop — WDAG2,
LNCS 647pp. 153-165, 1992.

[Had85] V. Hadzilacos. Issues of fault tolerance in coneatrcomputations (databases,
reliability, transactions, agreement protocols, distrdal computing). PhD thesis,
Cambridge, MA, USA, 1985.

[HMPOO] M. Hirt, U. Maurer, and B. Przydatek. Efficient seeunulti-party computation.
In ASIACRYPT 2000, LNCS 197%#. 143-161, 2000.

[IKLPO6] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrkn On combining privacy with
guaranteed output delivery in secure multiparty compaiatiin CRYPTO 2006,
LNCS 4117pp. 483-500, 2006.

[Koo06] C.-Y. Koo. Secure computation with partial messdgses. In TCC 2006,
LNCS 3876pp. 502-521, 2006.

[LF82] L. Lamport and M. J. Fischer. Byzantine generals aadgaction commit proto-

cols. Technical Report Opus 62, SRI International (MenlkZA), TR, 1982.

[LSP82]
IMP91]
[MR91]

[PRO3]

[PT86]

[PWO01]

[Ray02]

[RB8Y]

[Yao82]

Realistic Failures in Secure Multi-Party Computation 24

L. Lamport, R. Shostak, and M. Pease. The byzantameigls problem. ACM
Transactions on Programming Languages and Systé($%.382-401, 1982.

F. J. Meyer and D. K. Pradhan. Consensus with dualrainodes.|EEE Trans-
actions on Parallel and Distributed Syster2¢2):214—-222, 1991.

S. Micali and P. Rogaway. Secure computationCRYPTO '91, LNCS 576p.
392-404, 1991.

P. R. Parvedy and M. Raynal. Uniform agreement desmibcess omission
failures. Ininternational Symposium on Parallel and Distributed Presiag —
IPDPS 2003pp. 212.2, 2003.

K. J. Perry and S. Toueg. Distributed agreement imtiesence of processor and
communication faultslEEE Trans. Softw. Engl2(3):477-482, 1986.

B. Pfitzmann and M. Waidner. A model for asynchron@estive systems and its
application to secure message transmissionEEE Symposium on Security and
Privacy, pp. 184-200, 2001.

M. Raynal. Consensus in synchronous systems: Aiseiguided tour. IiPacific
Rim International Symposium on Dependable Computing — PRIDG, pp. 221,
2002.

T. Rabin and M. Ben-Or. Verifiable secret sharing andtiparty protocols with
honest majority. IlSTOC '89 pp. 73-85, 1989.

A. C. Yao. Protocols for secure computationsFCS '82 pp. 160-164, 1982.

