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Abstract

We show that a family of quantum authentication protocols intro-
duced in [Barnum et al., FOCS 2002] can be used to construct a secure
quantum channel and additionally recycle all of the secret key if the
message is successfully authenticated, and recycle part of the key if
tampering is detected. We give a full security proof that constructs
the secure channel given only insecure noisy channels and a shared se-
cret key. We also prove that the number of recycled key bits is optimal
for this family of protocols, i.e., there exists an adversarial strategy to
obtain all non-recycled bits. Previous works recycled less key and only
gave partial security proofs, since they did not consider all possible
distinguishers (environments) that may be used to distinguish the real
setting from the ideal secure quantum channel and secret key resource.

1 Introduction

1.1 Reusing a one-time pad

A one-time pad can famously be used only once [Sha49], i.e., a secret key
as long as the message is needed to encrypt it with information-theoretic
security. But this does not hold anymore if the honest players can use
quantum technologies to communicate. A quantum key distribution (QKD)
protocol [BB84, SBPC+09] allows players to expand an initial short secret
key, and thus encrypt messages that are longer than the length of the original
key. Instead of first expanding a key, and then using it for encryption, one
can also swap the order if the initial key is long enough: one first encrypts
a message, then recycles the key. This is possible due to the same physical
principles as QKD: quantum states cannot be cloned, so if the receiver holds
the exact cipher that was sent, the adversary cannot have a copy, and thus
does not have any information about the key either, so it may be reused.
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This requires the receiver to verify the authenticity of the message received,
and if this process fails, a net key loss occurs— the same happens in QKD:
if an adversary tampers with the communication, the players have to abort
and also lose some of the initial secret key.

1.2 Quantum authentication and key recycling

Some ideas for recycling encryption keys using quantum ciphers were al-
ready proposed in 1982 [BBB82]. Many years later, Damg̊ard et al. [DPS05]
(see also [DPS14, FS17]) showed how to encrypt a classical message in a
quantum state and recycle the key. At roughly the same time, the first
protocol for authenticating quantum messages was proposed by Barnum et
al. [BCG+02], who also proved that quantum authentication necessarily en-
crypts the message as well. Gottesman [Got03] then showed that after the
message is successfully authenticated by the receiver, the key can be leaked
to the adversary without compromising the confidentiality of the message.
And Oppenheim and Horodecki [OH05] adapted the protocol of [BCG+02]
to recycle key. But the security definitions in these initial works on quan-
tum authentication have a major flaw: they do not consider the possibility
that an adversary may hold a purification of the quantum message that
is encrypted. This was corrected by Hayden, Leung and Mayers [HLM11],
who give a composable security definition for quantum authentication with
key recycling. They then show that the family of protocols from [BCG+02]
are secure, and prove that one can recycle part of the key if the message is
accepted.

The security proof from [HLM11] does however not consider all possible
environments. Starting in works by Simmons in the 80’s and then Stinson in
the 90’s (see, for example, [Sim85,Sim88,Sti90,Sti94]) the classical literature
on authentication studies two types of attacks: substitution attacks — where
the adversary obtains a valid pair of message and cipher1 and attempts to
substitute the cipher with one that will decode to a different message— and
impersonation attacks — where the adversary directly sends a forged cipher
to the receiver, without knowledge of a valid message-cipher pair. To the
best of our knowledge, there is no proof showing that security against im-
personation attacks follows from security against substitution attacks, hence
the literature analyzes both attacks separately.2 This is particularly impor-
tant in the case of composable security, which aims to prove the security of

1Here we use the term cipher to refer to the authenticated message, which is often a
pair of the original message and a tag or message authentication code (MAC), but not
necessarily.

2In fact, one can construct examples where the probability of a successful impersonation
attack is higher than the probability of a successful substitution attack. This can occur,
because any valid cipher generated by the adversary is considered a successful imperson-
ation attack, whereas only a cipher that decrypts to a different message is considered a
successful substitution attack.
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the protocol when used in any arbitrary environment, therefore also in an
environment that first sends a forged cipher to the receiver, learns wether it
is accepted or rejected, then provides a message to the sender to be authen-
ticated, and finally obtains the cipher for this message. This is all the more
crucial when key recycling is involved, since the receiver will already recycle
(part of) the key upon receiving the forged cipher, which is immediately
given to the environment. The work of Hayden et al. [HLM11] only consid-
ers environments that perform substitution attacks — i.e., first provide the
sender with a message, then change the cipher, and finally learn the out-
come of the authentication as well as receive the recycled key. Hence they
do not provide a complete composable security proof of quantum authen-
tication, which prevents the protocol from being composed in an arbitrary
environment.3

More recently, alternative security definitions for quantum authentica-
tion have been proposed, both without [DNS12, BW16] and with [GYZ16]
key recycling (see also [AM16]). These still only consider substitution at-
tacks, and furthermore, they are, strictly speaking, not composable. While
it is possible to prove that these definitions imply security in a compos-
able framework (if one restricts the environment to substitution attacks),
the precise way in which the error ε carries over to the framework has not
been worked out in any of these papers. If two protocols with composable
errors ε and δ are run jointly (e.g., one is a subroutine of the other), the
error of the composed protocol is bounded by the sum of the individual
errors, ε + δ. If a security definition does not provide a bound on the com-
posable error, then one cannot evaluate the new error after composition.4

For example, quantum authentication with key recycling requires a back-
wards classical authentic channel, so that the receiver may tell the sender
that the message was accepted, and allow her to recycle the key. The error
of the complete protocol is thus the sum of errors of the quantum authen-
tication and classical authentication protocols. Definitions such as those
of [DNS12, BW16, GYZ16] are not sufficient to directly obtain a bound on
the error of such a composed protocol.

In the other direction, it is immediate that if a protocol is ε-secure ac-
cording to the composable definition used in this work, then it is secure
according to [DNS12,BW16,GYZ16] with the same error ε. More precisely,
proving that the quantum authentication scheme constructs a secure chan-
nel is sufficient to satisfy [DNS12, BW16] — i.e., the ideal functionality is

3For example, QKD can be broken if the underlying authentication scheme is vulnerable
to impersonation attacks, because Eve could trick Alice into believing that the quantum
states have been received by Bob so that she releases the basis information.

4In an asymptotic setting, one generally does not care about the exact error, as long
as it is negligible. But for any (finite) implementation, the exact value is crucial, since
without it, it is impossible to set the parameters accordingly, e.g., how many qubits should
one send to get an error ε ≤ 10−18.
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a secure channel which only allows the adversary to decide if the message
is delivered, but does not leak any information about the message to the
adversary except its length (confidentiality), nor does it allow the adversary
to modify the message (authenticity). And proving that the scheme con-
structs a secure channel that additionally generates fresh secret key is suffi-
cient to satisfy the definition of total authentication from [GYZ16]. Garg et
al. [GYZ16] also propose a definition of total authentication with key leakage,
which can be captured in a composable framework by a secure channel that
generates fresh key and leaks some of it to the adversary. This is however
a somewhat unnatural ideal functionality, since it requires a deterministic
leakage function, which may be unknown or not exist, e.g., in concrete pro-
tocols the bits leaked can depend on the adversary’s behavior — this is the
case for the trap code [BGS13,BW16], which we discuss further in Section 5.
The next natural step for players in such a situation is to extract a secret key
from the partially leaked key, and thus the more natural ideal functionality
is what one obtains after this privacy amplification step [BBCM95, RK05]:
a secure channel that generates fresh secret key, but where the key gener-
ated may be shorter than the key consumed. The ideal functionality used
in the current work provides this flexibility: the amount of fresh key gen-
erated is a parameter which may be chosen so as to produce less key than
consumed, the same amount, or even more.5 Hence, with one security def-
inition, we encompass all these different cases — no key recycling, partial
key recycling, total key recycling, and even a net gain of secret key. Fur-
thermore, having all these notions captured by ideal functionalities makes
for a particularly simple comparison between the quite technical definitions
appearing in [DNS12,BW16,GYZ16].

1.3 Contributions

In this work we use the Abstract Cryptography (AC) framework [MR11]
to model the composable security of quantum authentication with key recy-
cling. AC views cryptography as a resource theory: a protocol constructs
a (strong) resource given some (weak) resources. For example, the quan-
tum authentication protocols that we analyze construct two resources: a
secure quantum channel— a channel that provides both confidentiality and
authenticity — and a secret key resource that shares a fresh key between
both players. In order to construct these resources, we require shared se-
cret key, an insecure (noiseless) quantum channel and a backwards authen-
tic classical channel. These are all resources, that may in turn be con-
structed from weaker resources, e.g., the classical authentic channel can be
constructed from a shared secret key and an insecure channel, and noise-

5One may obtain more key than consumed by using the constructed secure channel to
share secret key between the players. We use this technique to compensate for key lost in
a classical authentication subroutine, that cannot be recycled.
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less channels are constructed from noisy channels. Due to this constructive
aspect of the framework, it is also called constructive cryptography in the
literature [Mau12,MR16].

Although this approach is quite different from the Universal Compos-
ability (UC) framework [Can01, Can13], in the setting considered in this
work— with one dishonest player and where recipients are denoted by clas-
sical strings6 — the two frameworks are essentially equivalent and the same
results could have been derived with a quantum version of UC [Unr10]. In
UC, the constructed resource would be called ideal functionality, and the
resources used in the construction are setup assumptions.

We thus first formally define the ideal resources constructed by the quan-
tum authentication protocol with key recycling— the secure channel and key
resource mentioned in this introduction — as well as the resources required
by this construction. We then prove that a family of quantum authentica-
tion protocols proposed by Barnum et al. [BCG+02] satisfy this construction,
i.e., no distinguisher (called environment in UC) can distinguish the real sys-
tem from the ideal resources and simulator except with an advantage ε that
is exponentially small in the security parameter. This proof considers all
distinguishers allowed by quantum mechanics, including those that perform
impersonation attacks.

We show that in the case where the message is accepted, every bit of
key may be recycled. And if the message is rejected, one may recycle all
the key except the bits used to one-time pad the cipher.7 We prove that
this is optimal for the family of protocols considered, i.e., an adversary may
obtain all non-recycled bits of key. This improves on previous results, which
recycled less key and only considered a subset of possible environments.
More specifically, Hayden et al. [HLM11], while also analyzing protocols
from [BCG+02], only recycle part of the key in case of an accept, and lose
all the key in case of a reject. Garg et al. [GYZ16] propose a new protocol,
which they prove can recycle all of the key in the case of an accept, but
do not consider key recycling in the case of a reject either. The protocols
we analyze are also more key efficient than that of [GYZ16]. We give two
instances which need Θ(m+ log 1/ε) bits of initial secret key, instead of the
Θ((m+log 1/ε)2) required by [GYZ16], where m is the length of the message
and ε is the error. Independently from this work, Alagic and Majenz [AM16]
proved that one of the instances analyzed here satisfies the weaker security
definition of [GYZ16].

Note that the family of protocols for which we provide a security proof

6In a more general setting, a message may be in a superposition of “sent” and “not
sent” or a superposition of “sent to Alice” and “sent to Bob”, which cannot be modeled
in UC, but is captured in AC [PMM+17].

7Key recycling in the case of a rejected message is not related to any quantum advantage.
A protocol does not leak more information about the key than (twice) the length of the
cipher, so the rest may be reused. The same holds for classical authentication [Por14].
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is a subset of the (larger) family introduced in [BCG+02]. More precisely,
Barnum et al. [BCG+02] define quantum authentication protocols by com-
posing a quantum one-time pad and what they call a purity testing code —
which, with high probability, will detect any noise that may modify the en-
coded message— whereas we require a stricter notion, a strong purity testing
code — which, with high probability, will detect any noise. This restriction
on the family of protocols is necessary to recycle all the key. In fact, there ex-
ists a quantum authentication scheme, the trap code [BGS13,BW16], which
is a member of the larger class from [BCG+02] but not the stricter class
analyzed here, and which leaks part of the key to the adversary, even upon
a successful authentication of the message — this example is discussed in
Section 5.

We then give two explicit instantiations of this family of quantum authen-
tication protocols. The first is the construction used in [BCG+02], which
requires an initial key of length 2m+ 2n, where m is the length of the mes-
sage and n is the security parameter, and has error ε ≤ 2−n/2+1

√

2m/n + 2.
The second is an explicit unitary 2-design [Dan05, DCEL09] discovered by
Chau [Cha05], which requires 5m + 4n bits of initial key8 and has error
ε ≤ 2−n/2+1. Both constructions have a net loss of 2m+ n bits of key if the
message fails authentication. Since several other explicit quantum authen-
tication protocols proposed in the literature are instances of this family of
schemes, our security proof is a proof for these protocols as well — this is
discussed further in Section 5.

Finally, we show how to construct the resources used by the protocol from
nothing but insecure noisy channels and shared secret key, and calculate the
joint error of the composed protocols. We also show how to compensate for
the bits of key lost in the construction of the backwards authentic channel,
so that the composed protocol still has a zero net key consumption if no
adversary jumbles the communication.

There is currently no work in the literature that analyzes the composable
security of quantum authentication without key recycling. And although a
security proof with key recycling is automatically a security proof without
key recycling, the parameters are not optimal— recycling the key results in
a larger error — and the proof given in this paper is only valid for strong
purity testing codes. So for completeness, we provide a proof of security
for quantum authentication without key recycling in Appendix D, which is
valid for weak purity testing codes and achieves an optimal error.

1.4 Structure of this paper

In Section 2 we give a brief introduction to the main concepts of AC, which
are necessary to understand the notion of cryptographic construction and

8The complete design would require 5m+5n bits of key, but we show that some of the
unitaries are redundant when used for quantum authentication and can be dropped.
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corresponding security defintion. A more extended introduction to AC is
provided in Appendix A. In Section 3 we then define the resources con-
structed and used by a quantum authentication scheme with key recycling.
We introduce the family of protocols from [BCG+02] that we analyze in this
work, and then prove that they construct the corresponding ideal resources.
We also prove that the number of recycled bits is optimal. In Section 4 we
show how to construct the various resources used by the quantum authenti-
cation protocol, and put the pieces together to get a security statement for
the joint protocol that constructs the secure quantum channel and secret
key resource from nothing but noisy insecure channels and shared secret key.
Finally, in Section 5 we discuss the relation between some quantum authen-
tication schemes that have appeared in the literature and those analyzed
here, as well as some open problems. An overview of the appendices is given
on page 39.

2 Constructive cryptography

As already mentioned in Section 1.3, the AC framework [MR11] models
cryptography as a resource theory. In this section we give a brief overview
of how these constructive statements are formalized. We illustrate this with
an example taken from [Por14], namely authentication of classical messages
with message authentication codes (MAC). An expanded version of this
introduction to AC is provided in Appendix A.

In an n player setting, a resource is an object with n interfaces, that
allows every player to input messages and receive other messages at her
interface. The objects depicted in Figure 1 are examples of resources. The
insecure channel in Figure 1a allows Alice to input a message at her interface
on the left and allows Bob to receive a message at his interface on the right.
Eve can intercept Alice’s message and insert a message of her choosing at her
interface. The authentic channel resource depicted in Figure 1b also allows
Alice to send a message and Bob to receive a message, but Eve’s interface
is more limited than for the insecure channel: she can only decide if Bob
receives the message, an error symbol or nothing at all — by inputing 0, 1,
or nothing, respectively, at her interface— but not tamper with the message
being sent. The key resource drawn in Figure 1c provides each player with
a secret key when requested. If two resources K and C are both available
to the players, we write K‖C for the resource resulting from their parallel
composition — this is to be understood as the resources being merged into
one: the interfaces belonging to player i are simultaneously accessible to
her as one new interface, which we depict in Figure 1d. In Appendix A we
provide a more detailed description of the resources from Figure 1 along a
discussion of how to model them mathematically.

Converters capture operations that a player might perform locally at her
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Insecure channel C

Alice Bob

Eve

(a) An insecure channel from Alice
(on the left) to Bob (on the right)
allows Eve (below) to intercept the
message and insert a message of her
own.

Authentic channel A

Alice Bob

Eve

0, 1

(b) An authentic channel from Alice
to Bob allows Eve (below) to receive
a copy of the message and choose
whether Bob receives it, an error sym-
bol, or nothing at all.

key

Secret key K
req. req.

k k

(c) A secret key resource distributes
a perfectly uniform key k to the play-
ers when they send a request req.

Insecure channel C

key

Secret key K
req. req.

k k

Composed resource K‖C

(d) If two resources K and C are avail-
able to the players, we denote the
composition of the two as the new re-
source K‖C.

Figure 1 – Some examples of resources. The insecure channel on the top left
could transmit either classical or quantum messages. The authentic channel
on the top right is necessarily classical, since it clones the message.
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y :=

hk(x)

πauth
A

y′ ?
=

hk(x
′)

πauth
B

key

Secret key K

Insecure channel C

k k

req. req.

x x′,⊥

(x, y) (x′, y′)

Figure 2 – The real system for a MAC protocol. Alice authenticates her
message by appending a MAC to it. Bob checks if the MAC is correct and
either accepts or rejects the message.

interface. For example, if the players share a key resource and an insecure
channel, Alice might decide to append a MAC to her message. This is
modeled as a converter πauthA that obtains the message x at the outside
interface, obtains a key at the inside interface from a key resource K and
sends (x, hk(x)) on the insecure channel C, where hk is taken from a family
of strongly 2-universal hash functions [WC81, Sti94]. We illustrate this in
Figure 2. Converters are always drawn with rounded corners. If a converter
αi is connected to the i interface of a resource R, we write αiR or Rαi for
the new resource obtained by connecting the two.9

A protocol is then defined by a set of converters, one for every honest
player. Another type of converter that we need is a filter. The resources
illustrated in Figure 1 depict a setting with an adversary that has some
control over these resources. For a cryptographic protocol to be useful it
is not sufficient to provide guarantees on what happens when an adversary
is present, one also has to provide a guarantee on what happens when no
adversary is present, e.g., if no adversary tampers with the message on
the insecure channel, then Bob will receive the message that Alice sent.
We model this setting by covering the adversarial interface with a filter
that emulates an honest behavior. In Figure 3 we draw an insecure and an
authentic channel with filters ♯E and ♦E that transmit the message to Bob.
In the case of the insecure channel, one may want to model an honest noisy
channel when no adversary is present. This is done by having the filter ♯E
add some noise to the message. A dishonest player removes this and has
access to a noiseless channel as in Figure 1a.

We use the term filtered resource to refer to a pair of a resource R and
a filter ♯E , and often write R♯ = (R, ♯E). Such an object can be thought
of as having two modes: it is characterized by the resource R♯E when no
adversary is present and by the resource R when the adversary is present.

9In this work we adopt the convention of writing converters at the A and B interfaces
on the left and converters at the E interface on the right, though there is no mathematical
difference between αiR and Rαi.
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Insecure channel C

♯E

(a) When no adversary is present, Al-
ice’s message is delivered to Bob. In
the case of a noisy channel, this noise
is introduced by the filter ♯E .

Authentic channel A

♦E

0

(b) When no adversary is present,
Bob receives the message sent by Al-
ice.

Figure 3 – Channels with filters. The two channels from Figures 1a and 1b
are represented with filters on Eve’s interface emulating an honest behavior,
i.e., when no adversary is present.

The final object that is required by the AC framework to define the no-
tion of construction and prove that it is composable, is a (pseudo-)metric
defined on the space of resources that measures how close two resources are.
In the following, we use a distinguisher based metric, i.e., the maximum ad-
vantage a distinguisher has in guessing whether it is interacting with resource
R or S, which we write d(R, S). More specifically, let D be a distinguisher,
and le D[R] and D[S] be the binary random variables corresponding to D’s
output when connected to R and S, respectively. Then the distinguishing
advantage between R and S is defined as

d(R, S) := sup
D

|Pr[D[R] = 0]− Pr[D[S] = 0]| .

Since we study information-theoretic security in this work, the supremum
is taken over the set of all possible distinguishers allowed by quantum me-
chanics. This is discussed further in Appendix A.3.

We are now ready to define the security of a cryptographic protocol. We
do so in the three player setting, for honest Alice and Bob, and dishonest
Eve. Thus, in the following, all resources have three interfaces, denoted A,
B and E, and a protocol is then given by a pair of converters (πA, πB) for
the honest players. We refer to [MR11] for the general case, when arbitrary
players can be dishonest.

Definition 2.1 (Cryptographic security [MR11]). Let πAB = (πA, πB) be a
protocol and R♯ = (R, ♯) and S♦ = (S,♦) denote two filtered resources. We

say that πAB constructs S♦ from R♯ within ε, which we write R♯
π,ε−−→ S♦, if

the two following conditions hold:

i) We have
d(πABR♯E , S♦E) ≤ ε .
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Authentic channel A

σauth
E

x

x

x,⊥

0, 1

y = hk(x)
(x, y)

?
=

(x′, y′)

(x, y) (x′, y′)

key

Figure 4 – The ideal system with simulator for a MAC protocol. The simulator
σauth
E picks its own key and generates the MAC. If the value input by Eve is

different from the output at her interface (or is input before an output is
generated), the simulator prevents Bob from getting Alice’s message.

ii) There exists a converter10 σE — which we call simulator— such that

d(πABR,SσE) ≤ ε .

If it is clear from the context what filtered resources R♯ and S♦ are meant,
we simply say that πAB is ε-secure.

The first of these two conditions measures how close the constructed
resource is to the ideal resource in the case where no malicious player is
intervening, which is often called correctness in the literature. The second
condition captures security in the presence of an adversary. For example,
to prove that the MAC protocol πauthAB constructs an authentic channel A♦

from a (noiseless) insecure channel C� and a secret key K within ε, we
need to prove that the real system (with filters) πauthAB (K‖C�E) cannot be
distinguished from the ideal system A♦E with advantage greater than ε,
and we need to find a converter σauthE such that the real system (without
filters) πauthAB (K‖C) cannot be distinguished from the ideal system AσauthE

with advantage greater than ε. For the MAC protocol, correctness is satisfied
with error 0 and the simulator σauthE drawn in Figure 4 satisfies the second
requirement if the family of hash functions {hk}k is ε-almost strongly 2-
universal [Por14].

Remark 2.2. The protocols and simulators discussed in this work are all
efficient. The protocols we consider are either trivially efficient or taken
from other work, in which case we refer to these other works for proofs
of efficiency. The efficiency of the simulator used to prove the security of
quantum authentication has been analyzed in [BW16]. All other simulators
used in the security proofs run the corresponding honest protocols, and

10For a protocol with information-theoretic security to be composable with a protocol
that has computational security, one additionally requires the simulator to be efficient.
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are thus efficient because the protocols are. We therefore do not discuss
efficiency any further in this work.

3 Quantum authentication

We start with some technical preliminaries in Section 3.1, where we intro-
duce (strong) purity testing codes, which are a key component of the family
of quantum authentication protocols of [BCG+02]. In Section 3.2 we give
a constructive view of quantum authentication with key recycling: we de-
fine the resources that such a protocol is expected to construct, as well as
the resources that are required to achieve this. In Section 3.3 we describe
the family of protocols that we analyze in this work, along with a vari-
ant in which the order of the encryption and encoding operations has been
swapped, which we prove to be equivalent. In Section 3.4 we give a secu-
rity proof for the family of quantum authentication protocols defined earlier.
And in Section 3.5 we show that the number of recycled key bits is optimal.
Finally, in Section 3.6 we give two explicit constructions of purity testing
codes and get the exact parameters of the quantum authentication protocols
with these codes.

3.1 Technical preliminaries

Pauli operators. To denote a Pauli operator on n qubits we write either
Px,z or Pℓ, where x and z are n-bit strings indicating in which positions
bit and phase flips occur, and ℓ = (x, z) is the concatenation of x and z,
which is used when we do not need to distinguish between x and z. Two
Pauli operators Pj and Pℓ with j = (x, z) and ℓ = (x′, z′) commute (anti-
commute) if the symplectic inner product

(j, ℓ)Sp := x · z′ − z · x′ (1)

is 0 (is 1), where x · z is the scalar product of the vectors and the arithmetic
is done modulo 2. Hence, for any Pj and Pℓ

PjPℓ = (−1)(j,ℓ)SpPℓPj .

We use several times the following equality

∑

j∈{0,1}n

(−1)(j,ℓ)Sp =

{

2n if ℓ = 0,

0 otherwise,
(2)

where ℓ = 0 means that all bits of the string ℓ are 0.

12



Purity testing code. An error correcting code (ECC) that encodes an
m qubit message in a m + n qubit code word is generally defined by an
isomorphism from C2m to C2m+n

. In this work we define an ECC by a
unitary U : C2m+n → C2m+n

. The code word for a state |ψ〉 is obtained
by appending a n qubit state |0〉 to the message, and applying U , i.e., the
encoding of |ψ〉 is U(|ψ〉⊗|0〉). We do not need to use the decoding properties
of ECCs in this work, we only use the them to detect errors, i.e., given a
state |ϕ〉 ∈ C2m+n

, we apply the inverse unitary U † and measure the last n
qubits to see if they are |0〉 or not.

The first property we require of our codes, is that they map any Pauli
error Pℓ into another Pauli error Pℓ′ , i.e.,

U †PℓU = eiθℓPℓ′ , (3)

for some global phase eiθℓ . This is always the case for any U that can be
implemented with Clifford operators. In particular, all stabilizer codes have
this property, which are used in [BCG+02] to define purity testing codes.
Note that the mapping from ℓ to ℓ′ defined by Eq. (3) is a permutation on
the set of indices ℓ ∈ {0, 1}2m+2n that depends only on the choice of code.

A code will detect an error Pℓ if Pℓ′ = Px,z ⊗ Ps,z′ for s 6= 0, where
Px,z acts on the first m qubits and Ps,z′ on the last n. Measuring these last
qubits would yield the syndrome s, since Ps,z′ flips the bits in the positions
corresponding to the bits of s. And an error Pℓ will act trivially on the
message if Pℓ′ = P0,0 ⊗ Ps,z. In particular, if Pℓ′ = P0,0 ⊗ P0,z, then this
error will not be detected, but not change the message either.

For a code indexed by a key k, we denote by Pk the set of Pauli errors
that are not detected by this code, and byQk ⊂ Pk we denote the undetected
errors which act trivially on the message. A purity testing code is a set of
codes {Uk}k∈K such that when a code Uk is selected uniformly at random,
it will detect with high probability all Pauli errors which act non-trivially
on the message.

Definition 3.1 (Purity testing code [BCG+02].). A purity testing code with
error ε is a set of codes {Uk}k∈K, such that for all Pauli operators Pℓ,

|{k ∈ K : Pℓ ∈ Pk \ Qk}|
|K| ≤ ε .

As mentioned in Section 1.3, we use a stricter definition of purity testing
code in this work. We require that all non-identity Paulis get detected with
high probability, even those that act trivially on the message. Intuitively,
the reason for this is that, with the original definition of purity testing, if
the adversary introduces some noise Pℓ, by learning whether the message
was accepted or not, she will learn whether that error acts trivially on the
message or not, and thus learn something about the ECC used. This means
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that the adversary learns something about the key used to choose the ECC,
and hence it cannot be recycled in its entirety.11

Definition 3.2 (Strong purity testing code.). A strong purity testing code
with error ε is a set of codes {Uk}k∈K, such that for all non-identity Pauli
operators Pℓ,

|{k ∈ K : Pℓ ∈ Pk}|
|K| ≤ ε .

In Section 3.6 we provide explicit constructions of strong purity testing
codes.

3.2 Secure channel & secret key resource

The main result in this paper is a proof that the family of quantum authen-
tication protocols of Barnum et al. [BCG+02] restricted to strong purity
testing codes can be used to construct a resource that corresponds to the
parallel composition of a secure quantum channel Sm and a secret key re-
source K̄νrej,νacc, which are illustrated in Figure 5 and explained in more
detail in the following paragraphs.

The secure quantum channel, Sm, drawn in Figure 5a, allows an m-qubit
message ρ to be transmitted from Alice to Bob, which Alice may input at her
interface. Since in general the players cannot prevent Eve from learning that
a message has been sent, Eve’s interface has one output denoted by a dashed
arrow, which notifies her that Alice has sent an m-qubit message. But the
players cannot prevent Eve from jumbling the communication lines either,
which is captured in the resource Sm by allowing Eve to input a bit that
decides if Bob gets the message or an error symbol ⊥— Eve may also decide
not to provide this input (Eve cuts the communication lines), in which case
the system is left waiting and Bob obtains neither the message nor an error.
Note that the order in which messages are input to the resource Sm is not
fixed, Eve may well provide her bit before Alice inputs a message. In this
case, Bob immediately receives an error ⊥ regardless of the value of Eve’s
bit.

The secret key resource, K̄νrej,νacc, depicted in Figure 5b distributes a
uniformly random key to Alice and Bob. Unlike the simplified key resource
from Figure 1c, here the adversary has some control over the length of the
key produced. This is because in the real setting Eve can prevent the full
key from being recycled by jumbling the message. This is reflected at Eve’s
interface of K̄νrej,νacc allowing her to decide if the key generated is of length
νrej or νacc. Furthermore, if in the real setting Alice were to recycle her
key before Bob receives the cipher, Eve could use the information from the
recycled key to modify the cipher without being detected. So Alice must wait

11We conjecture that in this case only 1 bit of the key is leaked, see the discussion in
Section 5.
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Secure channel Sm

Alice Bob

Eve

ρ ρ,⊥

m 0, 1

(a) A secure channel Sm is very sim-
ilar to the authentic channel from
Figure 1b. It allows Alice to send an
m-qubit message, and Eve to decide
if Bob gets it. But this time, Eve
only receives the size of the message
that has been sent (denoted by the
dashed arrow), not a copy.

key

Secret key K̄
νrej,νacc

Alice Bob

Eve

req. req.

k,⊥ k

0, 1 0, 1

(b) A slightly weaker secret key
resource than that from Figure 1c,
K̄νrej,νacc . It allows Eve to choose the
length of the key generated, either
|k| = νrej or |k| = νacc. Furthermore,
Eve can prevent Alice from getting
the key at all.

♭E

Secure channel Sm

ρ ρ

m 0

key

Secret key K̄
νrej,νacc

req. req.

k k

0 0

(c) When no adversary is present, the filter ♭E covers Eve’s interface of the
resource Sm‖K̄νacc,νrej . Once ♭E is notified that a message has been sent, it
allows the message through and notifies the secret key resource to prepare a
key of length νacc.

Figure 5 – We depict here the filtered resource (Sm‖K̄νacc,νrej , ♭E) constructed
by the quantum authentication protocols analyzed in this work. It can be
seen as the composition of a secure channel Sm (drawn in (a)) and a secret
key resource K̄νacc,νrej (drawn in (b)). The filter ♭E that emulates an honest
behavior is drawn in (c).
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for a confirmation of reception from Bob, which Eve can jumble, preventing
Alice from ever recycling the key. This translates in the ideal setting to Eve
having another control bit, deciding whether Alice receives the key or an
error ⊥. Note that if Eve provides her two bits in the wrong order, Alice
always gets an error ⊥. This key resource is modeled so that the honest
players must request the key to obtain its value. If Bob does this before Eve
has provided the bit deciding the key length, he gets an error instead of a
key. If Alice makes the request before Eve has provided both her bits, she
also gets an error. Otherwise they get the key k.

If no adversary is present, a filter ♭E covers Eve’s interface of the re-
sources Sm and K̄νrej,νacc, which is drawn in Figure 5c. This filter provides
the inputs to the resources that allow Bob to get Alice’s message and gen-
erate a key of length νacc that is made available to both players.

To construct the filtered resource (Sm‖K̄νrej,νacc)♭, the quantum authen-
tication protocol will use a shared secret key to encrypt and authenticate
the message. This means that the players must share a secret key resource.
For simplicity we assume the players have access to a resource Kµ as de-
picted in Figure 1c, that always provides them with a key of length µ.12

Note that the security of the protocol is not affected if the players only have
a weaker resource which might shorten the key or not deliver it to both
players — such as the one constructed by the protocol, namely K̄νrej,νacc —
because if either of the players does not have enough key, they simply abort,
which is an outcome Eve could already achieve by cutting or jumbling the
communication.

They also need to share an insecure quantum channel, which is used
to send the message, and is illustrated in Figure 1a without a filter and in
Figure 3a with a filter. The authentication protocol we consider is designed
to catch any error, so if it is used over a noisy channel, it will always abort,
even though no adversary is tampering with the message. We thus assume
that the players share a noiseless channel, which we denote C�, i.e., C is
controlled by the adversary as in Figure 1a. But if no adversary is present,
the filter �E is noiseless. In Section 4.2 we explain how to compose the
protocol with an error correcting code so as to run it over a noisy channel.

Finally, the players need a backwards authentic channel, that can send
one bit of information from Bob to Alice. This is required so that Alice
may learn whether the message was accepted and recycle the corresponding
amount of key. The authentic channel and its filter A♦ are drawn in Fig-
ures 1b and 3b. Putting all this together in the case of an active adversary,
we get Figure 6, where the converters for Alice’s and Bob’s parts of the quan-
tum authentication protocol are labeled πq-authA and πq-authB , respectively.

According to Definition 2.1, a protocol πq-authAB = (πq-authA , πq-authB ) is then

12Since Eve’s interface of Kµ is empty, this resource has a trivial empty filter, which we
do not write down.
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Authentic channel A

Insecure ch. C

Secret key K
µπq-auth

A πq-auth

B

ρ ρ′,⊥

req. req.

k′,⊥ k′

keyk k

req. req.

0, 1

Figure 6 – The real system for quantum authentication with key recycling.
Upon receiving a message ρ, πq-auth

A encrypts it with a key that it obtains from
Kµ and sends it on the insecure channel. Upon receiving a quantum state
on the insecure channel, πq-auth

B checks whether it is valid, and outputs the
corresponding message ρ′ or an error message ⊥. It may then recycle (part

of) the key, k′, and uses the authentic channel to notify πq-auth
A whether the

message was accepted or not. πq-auth
A then recycles the key as well. Concrete

protocols for this are given in Section 3.3.

a quantum authentication protocol (with key recycling) with error εq-auth if
it constructs (Sm‖K̄νrej,νacc)♭ from C�‖A♦‖Kµ within εq-auth, i.e.,

C�‖A♦‖Kµ πq-auth
AB ,εq-auth−−−−−−−−−→ (Sm‖K̄νrej,νacc)♭ . (4)

In Section 3.3 we describe the protocol, and in Section 3.4 we prove that
Eq. (4) is satisfied and provide the parameters µ, νrej, νacc, ε

q-auth.

3.3 Generic protocol

The family of quantum authentication protocols from [BCG+02] consists
in first encrypting the message to be sent with a quantum one-time pad,
then encoding it with a purity testing code and a random syndrome. We
do the same, but with a strong purity testing code. We also extend the
protocol so that the players recycle all the key if the message is accepted,
and the key used to select the strong purity testing code if the message is
rejected. So that Alice may also recycle the key, Bob uses the backwards
authentic classical channel to notify her of the outcome. We refer to this
as the “encrypt-then-encode” protocol, the details of which are provided in
Figure 7.

Alternatively, one may perform the encoding and encryption in the op-
posite order: Alice first encodes her message with the strong purity testing
code with syndrome 0, then does a quantum one-time pad on the result-
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Quantum authentication— encrypt-then-encode

1. Alice and Bob obtain uniform keys k, ℓ, and s from the key resource,
where k is long enough to choose an element from a strong purity testing
code that encodes m qubits in m+ n qubits, ℓ is 2m bits and s is n bits.

2. Alice encrypts the message ρA she receives with a quantum one-time pad
using the key ℓ. She then appends an n qubit state |s〉〈s|S , and encodes
the whole thing with a strong purity testing code, obtaining the cipher
σAS = Uk(Pℓρ

APℓ ⊗ |s〉〈s|S)U †
k .

3. Alice sends σAS to Bob on the insecure channel.

4. Bob receives a message σ̃AS , he applies U †
k , decrypts the A part and

measures the S part in the computational basis.

5. If the result of the measurement is s, he accepts the message and recycles
k, ℓ and s. If the result is not s, he rejects the message, and recycles k.

6. Bob sends Alice a bit on the backwards authentic channel to tell her if
he accepted or rejected the message.

7. When Alice receives Bob’s bit, she either recycles all the keys or only k.

Figure 7 – This protocol is identical to the scheme from [BCG+02], except that
the players use a strong purity testing code, recycle key, and have a backwards
authentic channel so that Alice may learn the outcome.

ing m + n qubit state. This “encode-then-encrypt” protocol is described in
Figure 8.

The pseudo-code described in Figures 7 and 8 can easily be translated
into converters as used in the AC formalism, i.e., the objects πq-authA and

πq-authB from Figure 6. More precisely, if πq-authA receives a message at its
outer interface, it requests a key from the key resource, encrypts the message
as described and sends the cipher on the insecure channel. It may receive
three symbols from the backwards authentic channel: an error ⊥, in which
case it does not recycle any key, a message 0 saying that πq-authB did not
receive the correct state, in which case it recycles the part of the key used
to choose the code, or a message 1 saying that πq-authB did receive the correct

state, in which case it recycles all the key. If πq-authA first receives a message
on the backwards authentic channel before receiving a message to send,
it will not recycle any key. Similarly, when πq-authB receives a cipher on
the insecure channel, it requests a key from the key resource, performs the
decryption, outputs either the message or an error depending on the result
of the decryption, and sends this result back to πq-authA on the authentic
channel.

The encode-then-encrypt protocol uses n bits more key, and since these
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Quantum authentication— encode-then-encrypt

1. Alice and Bob obtain uniform keys k and ℓ from the key resource, where
k is long enough to choose an element from a strong purity testing code
that encodes m qubits in m+ n qubits and ℓ is 2m+ 2n bits long.

2. Alice appends a n qubit state |0〉〈0| to the message ρA she receives, en-
codes it with a strong purity testing code chosen according to the key
k, and encrypts the whole thing with a quantum one-time pad using the
key ℓ. She thus obtains the cipher σAS = PℓUk(ρA ⊗ |0〉〈0|S)U †

kPℓ.

3. Alice sends σAS to Bob on the insecure channel.

4. Bob receives a message σ̃AS , he applies Pℓ, then U †
k , and measures the

S part in the computational basis.

5. If the result of the measurement is 0, he accepts the message and recycles
k and ℓ. Otherwise, he rejects the message, and recycles k.

6. Bob sends Alice a bit on the backwards authentic channel to tell her if
he accepted or rejected the message.

7. When Alice receives Bob’s bit, she either recycles all the keys or only k.

Figure 8 – This protocol is similar to the protocol from Figure 7, except that
the order of the encryption and encoding have been reversed. To do this, the
players need an extra n bits of key.

bits are not recycled in case of a reject, it is preferable to use the encrypt-
then-encode protocol. These protocols are however identical: no external
observer can detect which of the two is being run. This holds, because the
encode-then-encrypt protocol performs phase flips on a syndrome that is
known to be in a computational basis state |s〉. Thus, they have no effect
and can be skipped. Likewise, Bob performs phase flips on S before mea-
suring in the computational basis — he might as well skip these phase flips,
since they have no effect either. We formalize this statement by proving
(in Lemma 3.3) that the converters corresponding to the two different pro-
tocols are indistinguishable. This result is similar in spirit to proofs that
some prepare-and-measure quantum key distribution (QKD) protocols are
indistinguishable from entanglement-based QKD protocols, and thus secu-
rity proofs for one are security proofs for the other [SP00].

Since these two protocols are indistinguishable, we provide a security
proof in Section 3.4 for the encode-then-encrypt protocol. However, in
Section 3.6, when we count the number of bits of key consumed, we count
those of the encrypt-then-encode protocol.

Lemma 3.3. Let (π̄q-authA , π̄q-authB ) and (πq-authA , πq-authB ) denote the pairs of
converters modeling Alice’s and Bob’s behavior in the encrypt-then-encode
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and encode-then-encrypt protocols, respectively. Then

d(π̄q-authA , πq-authA ) = d(π̄q-authB , πq-authB ) = 0 .

Proof. We start with Alice’s part of the protocol. Let π̄q-authA and πq-authA

receive keys k, ℓ and s as in the protocol from Figure 7, as well as an extra
key z of length n that is needed by πq-authA , since it requires more key. The
distinguisher prepares a state ρRA, and sends the A part to the system.
π̄q-authA outputs

UASk PAℓ

(

ρRA ⊗ |s〉〈s|S
)

PAℓ
(

UASk
)†

= UASk
(

PAℓ ⊗ PSs,0
)

(

ρRA ⊗ |0〉〈0|S
)

(

PAℓ ⊗ PSs,0
)(

UASk
)†

= UASk
(

PAℓ ⊗ PSs,z
)

(

ρRA ⊗ |0〉〈0|S
)

(

PAℓ ⊗ PSs,z
)(

UASk
)†

= PASℓ′ UASk

(

ρRA ⊗ |0〉〈0|S
)

(

UASk
)†
PASℓ′ ,

where in the last line we used Eq. (3). This is exactly the state output by

πq-authA if when receiving the key k, ℓ, s, z, the protocol uses the Pauli Pℓ′ for
the quantum one-time pad.

For Bob’s part of the protocol, let the distinguisher prepare a state σRAS

and send the AS part to the system. The subnormalized state held jointly by
π̄q-authB and the distinguisher after decoding and performing the measurement
is given by

〈s|PAℓ
(

UASk
)†
σRASUASk PAℓ |s〉

= 〈0|
(

PAℓ ⊗ PSs,0
)(

UASk
)†
σRASUASk

(

PAℓ ⊗ PSs,0
)

|0〉
= 〈0|

(

PAℓ ⊗ PSs,z
)(

UASk
)†
σRASUASk

(

PAℓ ⊗ PSs,z
)

|0〉
= 〈0|

(

UASk
)†
PASℓ′ σRASPASℓ′ UASk |0〉 .

We again obtain the state that is jointly held by πq-authB and the distinguisher
if when receiving the key k, ℓ, s, z, the protocol uses the Pauli Pℓ′ for the
quantum one-time pad.

Remark 3.4. If part of the message is classical — i.e., it is diagonal in the
computational basis and known not to have a purification held be the dis-
tinguisher— then running the same proof as Lemma 3.3, one can show that
it is sufficient to perform bit flips on that part of the message, the phase
flips are unnecessary. This is the case with the protocol from Section 4.3,
that generates a key x locally and sends it to Bob using a quantum authen-
tication scheme. We use this to save some bits of key in the bounds from
Corollary 4.4 and Corollary 4.5.
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req. req.
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key
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00

req. req.

Figure 9 – The resource Qm,νrej,νacc is a restriction of the resource Sm‖Kνrej,νacc

in which Eve’s interface only allows 1 bit to be input to decide both the length
of the key and whether the message is received by Bob.

3.4 Security proof

As stated in Section 3.2 we wish to prove that the quantum authentication
protocol considered constructs a secure channel Sm and secret key resource
K̄νrej,νacc. We will however prove this as a corollary of a theorem that makes
a slightly stronger statement, namely that the protocol constructs a filtered
resource Q

m,νrej,νacc
♮ (depicted in Figure 9) that is equivalent to (Sm‖K̄νrej,νacc)♭,

except for the fact that it provides one switch at the adversarial interface
that decides both whether the message is delivered and the length of the
recycled key. K̄νrej,νacc and Sm each provide Eve with an input bit to decide
the length of the new key and whether the message is delivered, respectively,
but in the protocol the two bits are correlated, since the players only recycle
the full key if the message is successfully authenticated. One can thus make
a slightly stronger statement, in which the ideal resource constructed only
allows Eve to input one bit that decides both these things, which is what is
achieved by Q

m,νrej,νacc
♮ .

The parameteres of the construction are determined as follows. Let
{Uk}k∈K be a strong purity testing code of size log |K| = ν and with error
ε that encodes an m qubit message in an m + n qubit cipher. And let
πq-authAB = (πq-authA , πq-authA ) denote Alice and Bob’s converters when running
the encode-then-encrypt protocol from Figure 8. We are now ready to state
the main theorem, namely that πq-authAB is a secure authentication scheme
with key recycling.

Theorem 3.5. Let πq-authAB denote converters corresponding to the protocol

from Figure 8. Then πq-authAB constructs the secure channel and secret key

filtered resource Q
m,ν,ν+2m+2n
♮ , given an insecure quantum channel C�, a

backwards authentic channel A♦ and a secret key Kν+2m+2n, i.e.,

C�‖A♦‖Kν+2m+2n πq-auth

AB ,εq-auth−−−−−−−−→ Q
m,ν,ν+2m+2n
♮ ,

with εq-auth =
√
ε+ε/2, where ε is the error of the strong purity testing code.
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m,ν,ν+2m+2n

σq-auth
E|Φ〉CR

ρ ρ,⊥

m

C

key
kk

0, 1

0, 1 0, 1C′

req. req.

Figure 10 – The ideal quantum authentication system consisting of the con-
structed resource Sm and K̄ν,ν+2m+2n, and the simulator σq-auth

E .

In order to prove this theorem, we need to find a simulator such that the
real and ideal systems are indistinguishable except with advantage

√
ε+ε/2.

The simulator that we use is illustrated in Figure 10, and works as follows.
When it receives a notification from the ideal resource that a message is
sent, it generates EPR pairs |Φ〉CR and outputs half of each pair (the C
register) at its outer interface. Once it receives a modified cipher (denoted
C ′ in the picture), it measures this state and the half of the EPR pairs
it kept in the Bell basis to decide if they were modified. It accordingly
activates the switch on the resource Qm,ν,ν+2m+2n controlling whether Bob
gets the message and the length of the key generated, and outputs the bit
of backward communication from Bob to Alice— which is always leaked to
Eve. If it first receives the register C ′ before generating the EPR pairs, it
always notifies the ideal resource to output an error and outputs 0 as the
leak on the backwards authentic channel.

Proof. It is trivial to show that correctness holds with error 0, namely that

d
(

πq-authAB

(

C�E‖A♦E‖Kν+2m+2n
)

,Qm,ν,ν+2m+2n♮E

)

= 0 . (5)

We now prove the case of security, i.e.,

d
(

πq-authAB

(

C‖A‖Kν+2m+2n
)

,Qm,ν,ν+2m+2nσq-authE

)

≤ √ε+ ε/2 . (6)

The real and ideal systems, drawn in Figures 6 and 10 have 5 inputs. The
distinguisher thus has the choice between 5! possible orders for providing
inputs. However, most of these orders are redundant and do not need to be
analyzed. Providing the requests for the secret keys before they are ready is
pointless. So it is sufficient to look at the case where these requests are made
as soon as the keys are available for recycling, i.e., after Bob has received the
message from Alice and after Alice has received the confirmation from Bob.

22



What is more, neither sending Alice an error on the backwards authentic
channel nor allowing her to get Bob’s confirmation will help either way, since
the distinguisher already knows what output Alice will produce, so we can
completely ignore this input. That leaves only 2 in-ports, and thus 2 orders
to analyze:

1. The distinguisher first inputs a message at Alice’s interface, gets the
cipher at Eve’s interface, inputs a possibly modified cipher at Eve’s
interface, gets the output at Bob’s interface, and requests the recycled
key.

2. The distinguisher first inputs a fake cipher at Eve’s interface, gets the
output at Bob’s interface, makes a request for his recycled key, then
inputs a message at Alice’s interface and receives the cipher for that
message.

We start with the first case, the initial message is sent to Alice. The
distinguisher prepares a message |ψ〉ME and inputs the M part at Alice’s
interface. The ideal channel then notifies the simulator that a message has
been input. The simulator prepares a maximally entangled state |Φ〉CR
of dimension 22m+2n and outputs the C register at Eve’s interface. The
distinguisher now holds a bipartite state in CE, to which it applies a unitary
UCE. Without loss of generality, one may write the unitary as UCE =
∑

j P
C
j ⊗ EEj , where PCj are Paulis acting on the cipher register C and EEj

act on the distinguisher’s internal memory E. The resulting state in the C
register is input back in the E interface. The simulator now measures CR
in the Bell basis defined by the projectors {Pj ⊗ I|Φ〉〈Φ|CRPj ⊗ I}j . If the
outcome is j = 0— where P0 = I— it tells the resource Qm,ν,ν+2m+2n that
the cipher was not modified. In which case the contents of the register M
is output at Bob’s interface with an acc flag. Furthermore, Qm,ν,ν+2m+2n

generates a fresh uniform key (k, ℓ), where |k| = ν and |ℓ| = 2m + 2n. If
the outcome is j 6= 0, then the simulator notifies the resource to delete the
message and output a rej flag, as well as prepare only the shorter key k. The
distinguisher then sends a request to obtain the fresh key. So the final state
held by the distinguisher interacting with the ideal system is

ζ = |acc〉〈acc| ⊗ τK ⊗ τL ⊗
[

(

IM ⊗ EE0
)

|ψ〉〈ψ|ME
(

IM ⊗
(

EE0
)†
)]

+
∑

j 6=0

|rej〉〈rej| ⊗ τK ⊗ EEj ρE
(

EEj
)†
, (7)

where τK and τL are fully mixed states and ρE = trM (|ψ〉〈ψ|ME). One
could append states ⊥L and ⊥M in the rej branch of Eq. (7) so that both
terms have the same number of registers; we omit them for simplicity.
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In the real system, for the secret key (k, ℓ), the state before Bob’s mea-
surement of the syndrome is given by

|ϕk,ℓ〉SME =
∑

j

(

(

USMk
)†
PSMℓ PSMj PSMℓ USMk ⊗ EEj

)

|0〉S|ψ〉ME

=
∑

j

(−1)(j,ℓ)Sp
(

(

USMk
)†
PSMj USMk ⊗ EEj

)

|0〉S|ψ〉ME ,

where (·, ·)Sp denotes the symplectic product defined in Eq. (1). Let J ks be
the set of indices j such that the error PSMj produces a syndrome s when

code k is used, i.e.,
(

USMk
)†
PSMj USMk = eiθk,jPSs,z ⊗ PMj′ for some θk,j (see

Eq. (3) and discussion thereafter). For j ∈ J ks , let

|s〉S |ψj,k〉ME :=
(

(

USMk
)†
PSMj USMk ⊗ EEj

)

|0〉S |ψ〉ME

= eiθk,j
(

PSs,z ⊗ PMj′ ⊗ EEj
)

|0〉S |ψ〉ME .

Then

|ϕk,ℓ〉 =
∑

s

∑

j∈J k
s

(−1)(j,ℓ)Sp
(

(

USMk
)†
PSMj USMk ⊗EEj

)

|0〉S |ψ〉ME

=
∑

s

∑

j∈J k
s

(−1)(j,ℓ)Sp|s〉S|ψj,k〉ME .

The next step in Bob’s protocol consists in measuring the syndrome. If
s = 0 is obtained, he outputs the message as well as the key (k, ℓ) and a
flag acc. Otherwise he deletes the message, outputs k with the flag rej. The
final state held be the distinguisher in this case is

ξ =|acc〉〈acc| ⊗ 1

2ν+2m+2n

∑

k,ℓ

|k, ℓ〉〈k, ℓ|

⊗
∑

j1,j2∈J k
0

(−1)(j1⊕j2,ℓ)Sp |ψj1,k〉〈ψj2,k|ME

+ |rej〉〈rej| ⊗ 1

2ν+2m+2n

∑

k,ℓ

|k〉〈k|

⊗
∑

s 6=0

∑

j1,j2∈J k
s

(−1)(j1⊕j2,ℓ)SpEEj1ρ
E
(

EEj2
)†
,

where we have used |ψj,k〉ME =
(

VM
k,j ⊗ EEj

)

|ψ〉ME for some unitary V M
k,j .
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Setting

ζacc :=
(

IM ⊗ EE0
)

|ψ〉〈ψ|ME
(

IM ⊗
(

EE0
)†
)

,

ζ rej :=
∑

j 6=0

EEj ρ
E
(

EEj
)†
,

ξacck,ℓ :=
∑

j1,j2∈J k
0

(−1)(j1⊕j2,ℓ)Sp |ψj1,k〉〈ψj2,k|ME ,

ξrejk :=
1

22m+2n

∑

ℓ,s 6=0

∑

j1,j2∈J k
s

(−1)(j1⊕j2,ℓ)SpEEj1ρ
E
(

EEj2
)†
,

the distance between real and ideal systems may be written as

1

2
‖ζ − ξ‖tr =

1

2 · 2ν+2m+2n

∑

k,ℓ

∥

∥ζacc − ξacck,ℓ

∥

∥

tr
+

1

2 · 2ν
∑

k

∥

∥

∥
ζ rej − ξrejk

∥

∥

∥

tr
.

ζacc and ξacck,ℓ are both pure states, so from Lemma C.1 we bound their
distance as

1

2

∥

∥ζacc − ξacck,ℓ

∥

∥

tr
≤

∥

∥

∥

∥

∥

∥

(

IM ⊗ EE0
)

|ψ〉ME −
∑

j∈J k
0

(−1)(j,ℓ)Sp|ψj,k〉ME

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∑

j∈J k
0 \{0}

(−1)(j,ℓ)Sp|ψj,k〉ME

∥

∥

∥

∥

∥

∥

=
√

∑

j1,j2∈J k
0 \{0}

(−1)(j1⊕j2,ℓ)Sp〈ψj1,k|ψj2,k〉 ,

where ‖|a〉‖ =
√

〈a|a〉 is the vector 2-norm and we used the fact that

|ψ0,k〉ME =
(

IM ⊗ EE0
)

|ψ〉ME. From Jensen’s inequality and using Eq. (2)
we obtain

1

2 · 2ν+2m+2n

∑

k,ℓ

∥

∥ζacc − ξacck,ℓ

∥

∥

tr

≤
√

√

√

√

1

2ν+2m+2n

∑

k,ℓ

∑

j1,j2∈J k
0 \{0}

(−1)(j1⊕j2,ℓ)Sp〈ψj1,k|ψj2,k〉

=

√

√

√

√

1

2ν

∑

k

∑

j∈J k
0 \{0}

〈ψj,k|ψj,k〉 .

Finally, because the code is a strong purity testing code with error ε and
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that 〈ψj,k|ψj,k〉 = tr(EEj ρ
E
(

EEj

)†
) =: pj with

∑

j pj = 1, we get

1

2|K||L|
∑

k,ℓ

∥

∥ζacc − ξacck,ℓ

∥

∥

tr
≤
√

√

√

√

1

|K|
∑

j 6=0

∑

k:j∈J k
0

〈ψj,k|ψj,k〉

=

√

√

√

√

1

|K|
∑

j 6=0

∑

k:j∈J k
0

pj

≤
√

∑

j 6=0

εpj ≤
√
ε .

In the reject branch of the real system we have

ξrejk =
1

22m+2n

∑

ℓ,s 6=0

∑

j1,j2∈J k
s

(−1)(j1⊕j2,ℓ)SpEEj1ρ
E
(

EEj2
)†

=
∑

s 6=0

∑

j∈J k
s

EEj ρ
E
(

EEj
)†

=
∑

j /∈J k
0

EEj ρ
E
(

EEj
)†
,

where we used again Eq. (2). Thus

1

2 · 2ν
∑

k

∥

∥

∥
ζ rej − ξrejk

∥

∥

∥

tr
=

1

2 · 2ν
∑

k

∥

∥

∥

∥

∥

∥

∑

j∈J k
0 \{0}

EEj ρ
E
(

EEj
)†

∥

∥

∥

∥

∥

∥

tr

≤ 1

2 · 2ν
∑

k

∑

j∈J k
0 \{0}

pj ≤ ε/2 .

Putting all this together we get

1

2
‖ζ − ξ‖tr ≤

√
ε+ ε/2 .

We now consider the second case: the distinguisher first prepares a state
|ψ〉CE and inputs the C part at Eve’s interface, then obtains the output at
Bob’s interface. Note that in the ideal case the channel always outputs a rej

message at Bob’s interface. Thus, if the cipher is accepted by Bob — who
outputs a state ζacc — the distinguisher must be interacting with the real
system and can already output this guess. In the case of a rejection, it now
holds a bipartite system KE— the recycled key K and its purifying system
E. It then applies an isometry U : HKE → HKME to this system and
inputs the M part of the resulting state at Alice’s interface. After which it
obtains a cipher at Eve’s interface and holds the tripartite system KCE—
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the recycled key K, the cipher C and its internal memory E. We denote
this state ζ in the ideal case and ξrej in the real case, and we need to bound

1

2

∥

∥ζ − ξrej
∥

∥

tr
+

1

2
‖ξacc‖tr .

In a first step, we assume that the state |ψ〉CE prepared by the distin-

guisher is an antisymmetric fully entangled state, which we denote |Ψ−〉CE =
∑

x(−1)w(x)|x, x̄〉CE, where w(x) is the Hamming weight of x ∈ {0, 1}m+n

and x̄ is the string x with all bits flipped. In the ideal case the simulator
notifies the channel to reject the cipher, and the state |rej〉〈rej| ⊗ τK is out-
put at Bob’s interface. The distinguisher then holds ζ = τK ⊗ τE. In the
real case, Bob applies the decoding algorithm, i.e., first a Pauli PCℓ , then a

unitary
(

UCk
)†

and finally measures n bits of the syndrome in the computa-
tional basis. Since the antisymmetric state is invariant under U ⊗ U , one
could equivalently apply the inverse operation, PℓUk, to the E system, i.e.,
the state after Bob’s measurement is given by

1

2ν+3m+3n

∑

k,ℓ,s,x1,x2

(−1)w(x1)⊕w(x2)|k, ℓ〉〈k, ℓ|

⊗
(

IC ⊗ PEℓ UEk
)

|s, x1, s̄, x̄1〉〈s, x2, s̄, x̄1|CE
(

IC ⊗
(

UEk
)†
PEℓ

)

.

If s = 0 Bob accepts the cipher as being valid, which happens with probabil-
ity 2−n, i.e., ‖ξacc‖tr = 2−n. In the case where s 6= 0, he deletes the cipher,
so the remaining state is given by

1

2ν+3m+3n

∑

k,ℓ,s 6=0,x

|k, ℓ〉〈k, ℓ|⊗
(

IC ⊗ PEℓ UEk
)

|s̄, x̄〉〈s̄, x̄|CE
(

IC ⊗
(

UEk
)†
PEℓ

)

= τK ⊗ τL ⊗ τE − ρKLE ,

where

ρKLE =
1

2ν+3m+3n

∑

k,ℓ,x

|k, ℓ〉〈k, ℓ| ⊗ PEℓ UEk |0̄, x̄〉〈0̄, x̄|E
(

UEk
)†
PEℓ ,

K is made public and the L system is the part of the key kept secret by the
players.

Let E denote the completely positive, trace-preserving (CPTP) map con-
sisting of the distinguisher’s next step— the isometry U : HKE →HKME —
and the final operation of the ideal system — deleting the message system
M that is input at Alice’s interface and outputting a fully mixed state τC .
Let F denote the CPTP map consisting of the distinguisher’s next step
and the final operation of the real system — encoding the message system
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M according to the protocol and outputting the resulting cipher. We have
ζ = E

(

τK ⊗ τE
)

and ξrej = F
(

τK ⊗ τL ⊗ τE
)

−F
(

ρKLE
)

. Thus,

1

2

∥

∥ζ − ξrej
∥

∥

tr
≤ 1

2

∥

∥E
(

τK ⊗ τE
)

−F
(

τK ⊗ τL ⊗ τE
)
∥

∥

tr
+

1

2
2−n ,

since ‖ρKLE‖tr = 2−n. Finally, note that we have

E
(

τK ⊗ τE
)

= F
(

τK ⊗ τL ⊗ τE
)

= τC ⊗ σKE

for σKE = trM
[

U
(

τK ⊗ τE
)

U †
]

, since the random Pauli Pℓ applied by the
encryption algorithm completely decouples the cipher from KE. Putting
this together, we get

1

2
‖ζ − ξ‖tr ≤ 2−n ≤ √ε ,

since a strong purity testing code will always have an error ε ≥ 22m+n−1
22m+2n−1 ≥

2−2n.
The final case that remains to consider is when the distinguisher prepares

a state |ψ〉CE that is not the antisymmetric state. We will reduce this case

to that of the entangled antisymmetric by using the entangled state |Ψ−〉CE
to teleport the C ′ part of any state |ψ〉C′E′

. Let the teleportation scheme
be given by the projectors {MEC′

a } on EC ′ which incur a Pauli correction
PCa on the C system, i.e.,

trEC′

(

∑

a

PCa ⊗MEC′

a

(

∣

∣Ψ−
〉〈

Ψ−
∣

∣

CE ⊗ |ψ〉〈ψ|C′E′

)

PCa ⊗MEC′

a

)

= |ψ〉〈ψ|CE′ .

So the distinguisher prepares an entangled state |Ψ−〉CE and the state it

wishes to send to Bob, |ψ〉C′E′

. It teleports the C ′ register to the C register,

and sends this to Bob, who performs his decryption operation
(

UCk
)†
PCℓ .

This results in the shared state

1

2ν+2m+2n

∑

k,ℓ,a

|k, ℓ〉〈k, ℓ| ⊗
[(

(

UCk
)†
PCℓ P

C
a ⊗MEC′

a

)

(

∣

∣Ψ−
〉〈

Ψ−
∣

∣

CE ⊗ |ψ〉〈ψ|C′E′

)(

PCa P
C
ℓ U

C
k ⊗MEC′

a

)]

=
1

2ν+2m+2n

∑

k,ℓ,a

|k, ℓ⊕ a〉〈k, ℓ⊕ a| ⊗
[(

(

UCk
)†
PCℓ ⊗MEC′

a

)

(

∣

∣Ψ−
〉〈

Ψ−
∣

∣

CE ⊗ |ψ〉〈ψ|C′E′

)(

PCℓ U
C
k ⊗MEC′

a

)]

=
1

2ν+2m+2n

∑

k,ℓ,a

XL
a |k, ℓ〉〈k, ℓ|XL

a ⊗
[(

IC ⊗MEC′

a PEℓ U
E
k

)

(

∣

∣Ψ−
〉〈

Ψ−
∣

∣

CE ⊗ |ψ〉〈ψ|C′E′

)(

IC ⊗
(

UEk
)†
PEℓ M

EC′

a

)]

,
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where XL
a flips the bits of ℓ in the positions where ai = 1. The teleporta-

tion of |ψ〉C′E′ is thus equivalent to a measurement of the distinguisher’s
system followed by a correction of the secret key ℓ. This may however be
performed after Bob measures the syndrome and accepts or rejects the ci-
pher he received. The probability of accepting the cipher is thus unchanged,
and plugging in the result from the case where the distinguisher sends Bob
half of the anti-symmetric entangled state, we find that the state of the real
system in the rejection branch after Bob’s operations is

∑

a

(

XL
a ⊗MEC′

a

)

τK ⊗ τL ⊗ τE ⊗ |ψ〉〈ψ|C′E′

(

XL
a ⊗MEC′

a

)

−
∑

a

(

XL
a ⊗MEC′

a

)

ρKLE ⊗ |ψ〉〈ψ|C′E′

(

XL
a ⊗MEC′

a

)

= τK ⊗ τL ⊗ σEC′E′ − ρ̃KLEC′E′

,

where σEC
′E′

=
∑

aM
EC′

a

(

τE ⊗ |ψ〉〈ψ|C′E′

)

MEC′

a . And in the ideal system

the state after the ideal channel outputs a rejection is τK⊗σEC′E′

. We thus
obtain the same bound on the distance between real and ideal systems as in
the previous case.

Corollary 3.6. Let πq-authAB denote converteres corresponding to the protocol

from Figure 8. Then πq-authAB constructs the secure channel and secret key
filtered resource (Sm‖K̄ν,ν+2m+2n)♭, given an insecure quantum channel C�,
a backwards authentic channel A♦ and a secret key Kν+2m+2n, i.e.,

C�‖A♦‖Kν+2m+2n πq-auth

AB ,εq-auth−−−−−−−−→ (Sm‖K̄ν,ν+2m+2n)♭ ,

with εq-auth =
√
ε+ε/2, where ε is the error of the strong purity testing code.

Proof. Q
m,νrej,νacc
♮ is a stronger resource than (Sm‖K̄νrej,νacc)♭, and one trivially

has
Q
m,νrej,νacc
♮

id,0−−→ (Sm‖K̄νrej,νacc)♭ ,

with a simulator that forwards everything between the distinguisher and
Eve’s interface of Sm‖K̄νrej,νacc except for the bit deciding the secret key
length and whether the message is accepted, which is copied and sent to
both Sm and K̄νrej,νacc. The corollary follows immediately from this and the
composition theorem.

3.5 Optimality of the recycled key length

It follows from Lemma 3.3 that Theorem 3.5 and Corollary 3.6 are also
proofs of security for the encrypt-then-encode protocol from Figure 7, i.e.,

C�‖A♦‖Kν+2m+n π̄q-auth
AB ,εq-auth−−−−−−−−−→ Q

m,ν,ν+2m+n
♮

id,0−−→ (Sm‖K̄ν,ν+2m+n)♭ ,
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with εq-auth =
√
ε+ε/2. Thus, in the case where the message is not accepted

by Bob, 2m+n bits of key are lost. We prove here that this is optimal: one
cannot recycle any extra bit of key.

Lemma 3.7. There exists an adversarial strategy to obtain all the secret
bits that are not recycled in the encrypt-then-encode protocol.

Proof. The distinguisher prepares EPR pairs |Φ〉ME and provides the M
part to Alice. It then receives the cipher and thus holds the state

USMk PMℓ

(

|s〉S ⊗ |Φ〉ME
)

,

which it keeps. It then sends a bogus cipher to Bob, and obtains the key k

after Bob recycles it. It applies the decoding unitary
(

USMk
)†

, measures the
S register to get the secret key s and measures the joint ME register in the
Bell basis to get the secret key ℓ.

3.6 Explicit constructions

The protocols we have given in Section 3.3 use strong purity testing codes,
and the parameters of the key used, key recycled and error depend on the
parameters of these codes. In this section we give two constructions of purity
testing codes. The first requires less initial secret key, the second has a better
error parameter. Both have the same net consumption of secret key bits.

The first construction is from Barnum et al. [BCG+02]. They give an ex-

plicit strong purity testing code with ν = n and ε = 2m/n+2
2n .13 Plugging this

in the parameters from Theorem 3.5 with the encrypt-then-encode protocol,
we get the following.

Corollary 3.8. The encrypt-then-encode protocol with the purity testing
code of [BCG+02] requires an initial key of length 2m + 2n. It recycles all
bits if the message is accepted, and n bits if the message is rejected. The
error is

εq-auth =

√

2m/n + 2

2n
+
m/n+ 1

2n
.

The second construction we give is based on an explicit purity testing
code by Chau [Cha05]— though he does not name it this way. Chau [Cha05]
finds a set of unitaries U = {Uk} in dimension d such that, if k is chosen
uniformly at random, any non-identity Pauli is mapped to every non-identity
Pauli with equal frequency, i.e., ∀Pj , Pℓ with Pj 6= I and Pℓ 6= I,

∣

∣

∣

{

Uk ∈ U : UkPjU
†
k = eiθj,k,ℓPℓ

}
∣

∣

∣
=
|U|

d2 − 1
,

13In fact, [BCG+02] only prove that their construction is a purity testing code, not a
strong one. But one can easily verify that it is strong with the same parameters. What is
more, their construction has ν = log(2n +1) and ε = 2m/n+2

2n+1
. We remove one of the keys

(and thus increase the error), so as to get simpler final expressions.
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where eiθj,k,ℓ is some global phase.
We prove in Appendix B, Lemma B.2, that this is a strong purity testing

code with ε = 2−n for d = 2m+n. It also has |U| = 2m+n
(

22m+2n − 1
)

,
hence ν = m+ n+ log

(

22m+2n − 1
)

≤ 3m + 3n. Note that when composed
with Paulis as in the encode-then-encrypt protocol, {PℓUk}k,ℓ is a unitary 2-
design [Dan05,DCEL09]. It follows that any (approximate) unitary t-design
is a good quantum authentication scheme (see Appendix B for a formal
proof).

Corollary 3.9. The encrypt-then-encode protocol with the purity testing
code of [Cha05] requires an initial key of length 5m+ 4n. It recycles all bits
if the message is accepted, and 3m+ 3n bits if the message is rejected. The
error is εq-auth = 2−n/2 + 2−n−1.

4 Complete construction

We proved in Section 3 that the quantum authentication protocols from
Figures 7 and 8 construct a secure channel and secret key filtered resource
(Sm‖K̄νrej,νacc)♭ from a shared secret key Kµ, a noiseless insecure quantum
channel C� and a backwards authentic classical channel A♦, namely,

C�‖A♦‖Kµ πq-auth
AB ,εq-auth−−−−−−−−−→ (Sm‖K̄νrej,νacc)♭ .

In this section we show how to construct the required resources from nothing
but shared secret key and noisy channels, then put it all together to get the
exact bounds of the composed protocols.

We discuss in Section 4.1 how to obtain the authentic channel: it can
be constructed from a shared secret key and an insecure channel using any
(classical) MAC-type authentication scheme [Por14]. Channels are however
usually not noiseless. This is solved by using error correction: an error correc-
tion code constructs a noiseless channel given a noisy channel (with known
noise), and is presented in Section 4.2. Were we to put things together at
this point, we would construct the desired secure quantum channel from
nothing but shared secret key and insecure noisy channels. But even in the
case where no adversary is present, we would still consume some secret key,
because we do not recycle the key from the backwards authentic channel.
So in Section 4.3 we construct shared secret key given a secure channel —
we simply share secret key using the channel. Combining all these pieces to-
gether, we obtain our secure quantum channel without any net consumption
of key in the case where the adversary does not tamper with the messages.
The security of the composed scheme follows immediately from the security
of each component and the composition theorem of AC [MR11]. Finally, in
Section 4.5 we discuss a setting in which the backwards authentic channel
is not needed, thus allowing a more efficient use of the quantum channel —
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since we do not need it to distribute key, and can thus use all of its capacity
to send messages.

4.1 Authentic channel

We used classical authentication as an example in Section 2: an authentica-
tion protocol πauthAB constructs an authentic channel A♦ given a (noiseless)
insecure channel C� and a secret key Kη,

C�‖Kη πauth
AB ,εauth−−−−−−−→ A♦ . (8)

The corresponding real and ideal systems were illustrated in Figures 2 and
4, respectively. Appending the MAC hk(x) to the message x is sufficient to
construct the authentic channel with error ε if the family of functions {hk}k
is ε-almost strongly 2-universal [Por14]. In our case, Bob only needs to send
a 1-bit message to Alice. If the key k has length η, a 2−η/2-almost strongly
2-universal family of functions for 1-bit messages is given by hk(x) = kx,
where k0 are the first η/2 bits of k and k1 are the last η/2 bits.

Lemma 4.1. The authentication scheme described above satisfies Eq. (8)
with εauth = 2−η/2.

Proof. Follows from [Por14, Lemma 9].

4.2 Noiseless channel

Both the classical authentication protocol discussed in Sections 2 and 4.1, as
well as the quantum authentication protocol analyzed in Section 3 produce
an error message as soon as there is any disturbance on the channel. Realistic
channels are naturally noisy, so for such protocols to even make sense, one
needs an extra layer of error correction that is designed to correct the specific
noise on the channel. Here, we formalize this as a constructive statement.
Let πeccA encode a message with an error correcting code (ECC) given by the
completely positive, trace-preserving (CPTP) map E , and πeccB decode the
message with the CPTP map D, as illustrated in Figure 11a. And let εecc

be the error of the ECC for noise given by a CPTP map F , i.e.,

1

2
‖D ◦ F ◦ E − id‖⋄ ≤ εecc . (9)

Then πeccAB = (πeccA , πeccB ) constructs a noiseless (insecure) channel C̄� from a
noisy (insecure) channel C♯, if the filter ♯E introduces the noise F , i.e.,

C̄♯
πecc
AB ,ε

ecc

−−−−−→ C� . (10)

Note that the resources C and C̄ are of different dimension, since an error
correcting code will map a quantum state to a new one of larger dimension.

32



Insecure ch. C̄

F♯E

E

πecc
A

D

πecc
B

(a) The real system without adver-
sary: the insecure channel C̄ with the
noisy filter ♯E and protocol πecc

A , πecc
B .

Insecure channel C

�E

(b) The ideal system without adver-
sary: the insecure channel C with the
noiseless filter �E.

Insecure ch. C̄

E

πecc
A

D

πecc
B

(c) The real system with an active ad-
versary: the insecure channel C̄ and
protocol πecc

A , πecc
B .

Insecure channel C

σecc
E E D

(d) The ideal system with an active
adversary: the insecure channel C

and simulator σecc
E .

Figure 11 – An error correcting code constructs a noiseless channel C� from
a noisy channel C̄♯.

In this work we generally we do not use different notation for channels of
different dimensions, since the dimension is usually clear from the context,
and we juste write C for an insecure channel. We distinguish a noiseless
from a noisy channel by its filter, �E and ♯E , respectively.

Lemma 4.2. If the filter ♯E introduces noise given by a CPTP map F , and
the encoding and decoding maps E and D satisfy Eq. (9), then the protocol
πeccAB that uses this ECC satisfies Eq. (10).

Proof. We need to prove that d(πeccABC̄♯E ,C�E) ≤ εecc and d(πeccABC̄,Cσ
ecc
E ) ≤

εecc for some simulator σeccE to satisfy the two conditions from Definition 2.1.
These systems are drawn in Figure 11. One can easily check from the figure
that the first condition holds because the ECC was designed to achieve
exactly this. πeccABC̄ and CσeccE are each a pair of channels, one performing
the encoding operation E , the other the decoding operation D, so the second
condition holds with distance 0.

Naturally, Lemma 4.2 only makes sense if there exists a code than can
correct the errors introduced by F , i.e., if there exist maps E ,D that satisfy
Eq. (9). In this work, when we talk about a noisy channel resource, we
always mean such a channel that has non-zero capacity.
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Secure ch. & key Q
m+r,νrej,νaccπkey

A

ρ′ = ρ⊗ |x〉〈x|

πkey

B

ρ′
ρ′,⊥

m+ r

ρ ρ,⊥
key

kkk|x, k,⊥ k|x, k

0, 10, 1

req. req.req. req.

Figure 12 – Distributing a secret key using the channel Qm,νrej,νacc constructed
by a quantum authentication code. Alice generates a random string x of length
r and appends it to an m qubit message ρ. If Bob successfully authenticates
the message, he appends x to the recycled key. If Alice gets a confirmation
from Bob that he received the correct message, she appends x to the recycled
key.

4.3 Obtaining more key

It is trivial to share secret key using a secure channel: Alice generates a
uniform string and sends it on the secure channel to Bob. If the channel
can transmit an m+ r qubit state and we use it to share a r bit key, then m
qubits can still be used to transmit a message. Writing this using the AC
resource theory notation, we get

Sm+r −→ Sm‖K̃r ,

where K̃r generates an r-bit key, but allows Eve to prevent Bob from receiv-
ing it.

Although this statement is correct, it is somewhat inconvenient, since
K̃r allows Eve to control whether Bob receives the key, but Alice does not
know whether he received it; whereas in the real quantum authentication
system analyzed, Alice actually learns whether Bob receives her message
or not, since he sends her a confirmation bit on the backwards authentic
channel. A stronger statement can be made if instead of using the final
secure channel Sm constructed in Corollary 3.6 to share secret key, we use
the intermediary secure channel & key resource Qm,νrej,νacc constructed in
Theorem 3.5 (and illustrated in Figure 9), in which the secure channel Sm

and fresh key K̄νrej,νacc are merged into one, with only one input bit at Eve’s
interface controlling both the length of the key and whether the message is
delivered.

Using this secure channel to distribute key we get the system drawn
in Figure 12, where Alice’s converter πkeyA only outputs the r bits of key
she inserted on the channel if she gets confirmation that Bob receives the
message, i.e., if she obtains the longer key.

Lemma 4.3. Let πkeyAB = (πkeyA , πkeyA ) denote the protocol described above. It

constructs a Q
m,νrej,νacc+r
♮ secure channel from a Q

m+r,νrej,νacc
♮ secure channel

34



with no error, i.e.,

Q
m+r,νrej,νacc
♮

πkey

AB,0−−−−→ Q
m,νrej,νacc+r
♮ .

Proof. This lemma trivially holds with a simulator that changes the length
of the message leaked at Eve’s interface from m + r to m and forwards the
two control bits to the constructed Qm,νrej,νacc+r.

As in Corollary 3.6, it follows that

Q
m+r,νrej,νacc
♮

πkey
AB,0−−−−→ (Sm‖K̄νrej,νacc+r)♭ .

4.4 Putting it together

If we compose all the protocols described above, we obtain the system de-
picted in Figure 13. Let πA denote the composition of Alice’s converters
and πB denote the composition of Bob’s converters. We then immediately
get that the πAB = (πA, πB) constructs a secure channel and secret key fil-
tered resource, (Sm‖K̄νrej,νacc+r)♭, from secret keys Kµ and Kη, and two noisy

channels
−→
C♯ and

←−
C♯ with error ε = max

{

εq-auth + εauth,−→ε ecc +←−ε ecc
}

, where
the arrows are used to distinguisher the forwards quantum channel and the
backwards classical channel, i.e,

K
µ‖Kη‖−→C♯‖

←−
C♯

πAB ,ε−−−−→ (Sm‖K̄νrej,νacc+r)♭ .

In the following we assume for simplicity that −→ε ecc +←−ε ecc ≤ εq-auth +
εauth and take ε = εq-auth +εauth. Plugging in r = η = n and the parameters
from the two explicit quantum authentication protocols from Section 3.6, we
get the following two corollaries. Corollary 4.4 uses the explicit construction
proposed by Barnum et al. [BCG+02]. Corollary 4.5 uses the explicit unitary
2-design construction from Chau [Cha05] (see Section 3.6 for details).

Corollary 4.4. For any m and n, there exist an explicit protocol that re-
quires 2m+4n bits of secret key, a forwards noisy insecure quantum channel
and a backwards noisy insecure classical channel, to construct a secure chan-
nel for an m qubit quantum message, which recycles all the key if the message
is accepted and n bits if the message is rejected, and has error

ε ≤ 2−n/2(1 +
√

2m/n+ 4) + 2−n(m/n+ 2) .

Proof. Follows from the composition theorem from AC [MR11] as well as
Remark 3.4, Corollary 3.8, Lemma 4.1, Lemma 4.2, and Lemma 4.3.

Corollary 4.5. For any m and n, there exists an explicit protocol that re-
quires 5m+9n bits of secret key, a forwards noisy insecure quantum channel
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Figure 13 – Composing all the protocols discussed in this work results in
the system depicted here. In blue we have drawn the systems constructing
the noiseless insecure quantum channel, in violet the systems constructing the
backwards noiseless classical channel, in red (along with the violet subprotocol)
the systems constructing the backwards authentic channel, in green (along with
the red and blue subprotocols) the systems constructing the secure quantum
channel that recycles the key Kµ, and in brown (along with the green subpro-
tocol) the systems constructing the secure quantum channel that compensates
for the lost key Kη.

and a backwards noisy insecure classical channel, to construct a secure chan-
nel for an m qubit quantum message, which recycles all the key if the message
is accepted and 3m+ 6n bits if the message is rejected, and has error

ε ≤ 2−n/2+1 + 2−n−1 .

Proof. Follows from the composition theorem from AC [MR11] as well as
Remark 3.4, Corollary 3.9, Lemma 4.1, Lemma 4.2, and Lemma 4.3.

Note that both schemes have a loss of 2m+ 3n key bits if the message is
not successfully authenticated: 2m bits used to one-time pad the quantum
message of length m, 2n bits to one-time pad the two classical strings of n
bits — the n bits of key sent to replace those consumed by the backwards
authentic channel and the n bits used as syndrome— and finally the n bits
consumed by the backwards authentic channel cannot be replaced, so they
are lost as well.
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4.5 Removing the authentic channel

The backwards authentic channel is crucial in the construction of the secure
channel with key recycling analyzed in this section, because without it, Alice
would not know that her message arrived— let alone whether it was accepted
or not — and thus not be able to recycle the key. One can however skip
the authentic channel if the players share a stronger resource, e.g., another
secure quantum channel that recycles key.

This is the case if the players construct secure quantum channels in
both directions and alternate between the two: first Alice sends a quantum
message to Bob, then Bob to Alice, then Alice to Bob, etc. Let them share
two sets of keys, one set is used for the forward communication, the other
is used for the backward communication. If at any point a message is not
successfully authenticated, this means that an eavesdropper is disturbing the
communication, and the players abort and stop communicating. Thus, Bob
only sends his next message to Alice if he successfully received her message.
So if Alice successfully authenticates Bob’s message, she knows that hers was
received, and can recycle all of her key to send the next message. We thus
avoid any explicit confirmation of reception, since sending the next message
is in itself the confirmation.

One can easily show that the composition of n rounds of this protocol,
each round sending an m qubit quantum message, constructs a secure chan-
nel for nm qubits, which we denote Rm,n. Unlike the resource Sm which
gave the adversary a 1 bit input to decide if the message is delivered or not,
Rm,n provides the adversary with a bit of input for every block of m qubits—
but if one block is prevented from being delivered, none of the subsequent
messages are delivered either. The error of this construction is n times the
error of each round, ε = nεq-auth. This may continue arbitrary long if no ad-
versary introduces noise on the channel, since the quantum authentication
protocol recycles every bit of key.

5 Discussion and open questions

The family of quantum authentication protocols of Barnum et al. [BCG+02]
as well as the subset analyzed in this work are large classes, which include
many protocols appearing independently in the literature. The signed poly-
nomial code [BCG+06, ABE10], the Clifford code [ABE10, DNS12, BW16]
(which is a unitary 3-design [Zhu15,Web15]) and the unitary 8-design scheme
from [GYZ16] are all instances which use a strong purity testing code. Our
results apply directly to the Clifford and unitary 8-design schemes— which
have in the same error as the unitary 2-design scheme from Corollary 3.9.
But the signed polynomial code uses an ECC on qudits, not qubits, so our
proof does not cover this case, and would have to be adapted to do so.

The trap code [BGS13,BW16] is an example of a quantum authentication
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scheme that uses a purity testing code that is not a strong purity testing
code, i.e., errors which do not modify the message do not necessarily provoke
an abort. For example, if the adversary performs a simple bit flip in one
position, this will provoke an abort with probability 2/3 in the variant from
[BGS13] and with probability 1/3 in the variant from [BW16], but leaves the
message unmodified if no abort occurs. If the adversary learns whether Bob
accepted the message or not, she will learn whether the ECC used detects
that specific bit flip or not, and thus learn something about the key used to
select the ECC. Hence, the players cannot recycle the entire key, even in the
case where the message is accepted. The restriction to strong purity testing
codes is thus necessary to recycle every bit. It remains open how many bits
of key can be recycled with the trap code, but we conjecture that this bit
leaked due the decision to abort or not is the only part of the key leaked,
and the rest can be recycled.

Another quantum authentication scheme, Auth-QFT-Auth, has been
proposed in [GYZ16], where the authors prove that some of the key can
be recycled as well. We do not know if this scheme fits in the family
from [BCG+02] or not.

In the classical case, almost strongly 2-universal hash functions [WC81,
Sti94] are used for authentication, and any new family of such functions im-
mediately yields a new MAC. Likewise, any new purity testing code provides
a new quantum authentication scheme. However, it is unknown whether all
quantum authentication schemes can be modeled as a combination of a
one-time pad and a purity testing code, or whether there exist interesting
schemes following a different pattern.

We have proven that a loss of 2m+n bits of key is inevitable with these
schemes if the adversary tampers with the channel. In the case of the unitary
2-design scheme, which has the smallest error, this is 2m+ 2 log 1/ε+ 2 bits
of key which are consumed. A loss of 2m bits will always occur, since these
are required to one-time pad the message. It remains open whether there
exist other schemes — which do not fit the one-time pad + purity testing
code model— which recycle more key.

The initial preprint of this work suggested that one should also investi-
gate whether it is possible to find a prepare-and-measure scheme to encrypt
and authenticate a classical message in a quantum state, so that all of the
key may be recycled if it is successfully authenticated. At the time of writ-
ing, a possible solution had already been found by Fehr and Salvail [FS17].
Their protocol is however not known to be composable, and it remains open
to prove that it achieves the desired result in such a setting.
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Appendices

In Appendix A we provide a longer introduction to AC framework than al-
ready present in Section 2. In Appendix B we give an introduction to unitary
2-designs and prove that they are strong purity testing codes. Appendix C
contains some technical lemmas used in the body of this work. And in
Appendix D we provide a security proof for quantum authentication with-
out key recycling.

A Abstract cryptography

As already mentioned in Section 1.3, the AC framework [MR11] models
cryptography as a resource theory. The AC framework does however not
explicitly define these resources. It follows a top-down paradigm and only
specifies on each level of abstraction the properties of objects that are abso-
lutely essential— the axioms these objects must satisfy. This simplifies the
framework by removing unnecessary and cumbersome information— e.g., a
model of computation — and results in more general framework that is not
hard-coded with a specific communication or scheduling model. In this sec-
tion we give a brief introduction to AC. We illustrate this with an example
taken from [Por14], namely that appending a message authentication code
(MAC) to a classical message is sufficient to construct a classical authentic
channel given an insecure channel and a shared secret key. We refer the
interested reader to the original AC paper [MR11] for a detailed treatment
of the abstract layer and to [Mau12,PR14] for more gentle introductions to
AC.

A.1 Resources

An I-resource is an (abstract) system with interfaces specified by a set I,
e.g., I = {A,B,E}. Each interface i ∈ I is accessible to a user i. The ob-
jects depicted in Figure 1 are examples of resources. The insecure channel
in Figure 1a allows Alice to input a message at her interface on the left and
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allows Bob to receive a message at his interface on the right. Eve can inter-
cept Alice’s message and insert a message of her choosing at her interface.
Mathematically, this can be captured by two identity channels, one from
Alice to Eve and one from Eve to Bob, which may be used independently.
The authentic channel resource depicted in Figure 1b also allows Alice to
send a message and Bob to receive a message, but Eve’s interface is more
limited than for the insecure channel: she can only decide if Bob receives the
message, an error symbol or nothing at all — by inputing 0, 1, or nothing,
respectively, at her interface— but not tamper with the message being sent.
This can be modeled mathematically by two maps. The first goes from Al-
ice to Eve and some internal memory of the system: upon receiving Alice’s
message, it stores a copy in the memory sends the other to Eve. The second
map goes from Eve and the internal memory to Bob: Bob either receives a
copy of the memory or an error message depending on Eve’s input. Note
that if the maps are activated in the other order, Bob will receive an error
regardless of Eve’s input value. The key resource drawn in Figure 1c pro-
vides each player with a secret key when requested. This can be modeled by
two maps, which each take the input req. from a player and return the key
value (which is chosen uniformly at random). In Appendix A.3 we discuss
how to model resources in general as mathematical objects.

Additionally, resources are equipped with a parallel composition opera-
tor, ‖, that maps two resources to another resource. This is to be understood
as both resources being merged into one, that can be accessed in any arbi-
trary order. For example, if players share a secret key resource K and a
channel resource C, they have the resource K‖C available, as depicted in
Figure 1d. Given access to K‖C, the players could, e.g., get a key from K

and use it to encode a message that is sent on C

Converters capture operations that a player might perform locally at her
interface. These are (abstract) systems with two interfaces, an inside inter-
face and an outside interface. The inside interface connects to an interface
of a resource, and the outside interface becomes the new interface of the
resource resulting from the connection of this converter and resource. For
example, in the setting described a paragraph higher, Alice might decide
to append a MAC to her message. This is modeled as a converter πauthA

that obtains the message x at the outside interface, obtains a key at the
inside interface from a key resource K and sends (x, hk(x)) on the insecure
channel C, where hk is taken from a family of strongly 2-universal hash func-
tions [WC81, Sti94]. We illustrate this in Figure 2. Converters are always
drawn with rounded corners.

If a converter αi is connected to the i interface of a resource R, we
write αiR or Rαi for the new resource obtained by connecting the two —
in this work we adopt the convention of writing converters at the A and B
interfaces on the left and converters at the E interface on the right, though
there is no mathematical difference between αiR and Rαi. Serial and parallel
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composition of converters is defined as follows:

(αiβi)R := αi(βiR) and (αi‖βi)(R‖S) := (αiR)‖(βiS) .

By definition, converters at different interfaces commute, i.e., αiβjR =
βjαiR if i 6= j. This allows us to draw systems as in Figure 2 without
having to specify an order in which πauthA and πauthB are connected to the
resource K‖C.

A protocol is then defined by a set of converters, one for every honest
player. Another type of converter that we need is a filter. The resources
illustrated in Figure 1 depict a setting with an adversary that has some
control over these resources. For a cryptographic protocol to be useful it
is not sufficient to provide guarantees on what happens when an adversary
is present, one also has to provide a guarantee on what happens when no
adversary is present, e.g., if no adversary tampers with the message on the
insecure channel, then Bob will receive the message that Alice sent. We
model this setting by covering the adversarial interface with a filter that
emulates an honest behavior.14 In Figure 3 we draw an insecure and an
authentic channel with filters ♯E and ♦E that transmit the message to Bob.
In the case of the insecure channel, one may want to model an honest noisy
channel when no adversary is present. This is done by having the filter ♯E
add some noise to the message. A dishonest player removes this and has
access to a noiseless channel as in Figure 1a.

We use the term filtered resource to refer to a pair of a resource R and a
filter ♯E , and often write R♯ = (R, ♯E). Such an object can be thought of as
having two modes: it is characterized by the resource R♯E when no adversary
is present and by the resource R when the adversary is present. Parallel
composition of filtered resources naturally follows from parallel composition
of resources and converters:

R♯‖S♦ := (R‖S)♯‖♦ .

The final object that is required by the AC framework to define the no-
tion of construction and prove that it is composable, is a (pseudo-)metric
defined on the space of resources that measures how close two resources
are. In the following, we use a distinguisher based metric, i.e., the max-
imum advantage a distinguisher has in guessing whether it is interacting
with resource R or S, which we write d(R, S). This is discussed further in
Appendix A.3.

14More generally, a filter covers the inputs and outputs that are only accessible to a
dishonest player, but provides access to those that should be available to an honest player.
The dishonest player can remove the filter to have more control over the resource. We
however do not need such a feature in this work, since we only consider resources with
E-interfaces that are blank if the adversary is not active.
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A.2 Security definition

We are now ready to define the security of a cryptographic protocol. We
do so in the three player setting, for honest Alice and Bob, and dishonest
Eve. Thus, in the following, all resources have three interfaces, denoted A,
B and E, and a protocol is then given by a pair of converters (πA, πB) for
the honest players. We refer to [MR11] for the general case, when arbitrary
players can be dishonest. For convenience, we reproduce here Definition 2.1.

Definition A.1 (Cryptographic security [MR11]). Let πAB = (πA, πB) be
a protocol and R♯ = (R, ♯) and S♦ = (S,♦) denote two filtered resources.

We say that πAB constructs S♦ from R♯ within ε, which we write R♯
π,ε−−→ S♦,

if the two following conditions hold:

i) We have
d(πABR♯E , S♦E) ≤ ε .

ii) There exists a converter15 σE — which we call simulator— such that

d(πABR,SσE) ≤ ε .

If it is clear from the context what filtered resources R♯ and S♦ are meant,
we simply say that πAB is ε-secure.

The first of these two conditions measures how close the constructed
resource is to the ideal resource in the case where no malicious player is
intervening, which is often called correctness in the literature. The second
condition captures security in the presence of an adversary. For example,
to prove that the MAC protocol πauthAB constructs an authentic channel A♦

from a (noiseless) insecure channel C� and a secret key K within ε, we
need to prove that the real system (with filters) πauthAB (K‖C�E) cannot be
distinguished from the ideal system A♦E with advantage greater than ε,
and we need to find a converter σauthE such that the real system (without
filters) πauthAB (K‖C) cannot be distinguished from the ideal system AσauthE

with advantage greater than ε. For the MAC protocol, correctness is satisfied
with error 0 and the simulator σauthE drawn in Figure 4 satisfies the second
requirement if the family of hash functions {hk}k is ε-almost strongly 2-
universal [Por14].

It follows from the composition theorem of the AC framework [MR11]
that if two protocols π and π′ are ε- and ε′-secure, the composition of the
two is (ε + ε′)-secure. More precisely, let protocols π and π′ construct S♦

from R♯ and T� from S♦ within ε and ε′, respectively, i.e.,

R♯
π,ε−−→ S♦ and S♦

π′,ε′−−−→ T� .

15For a protocol with information-theoretic security to be composable with a protocol
that has computational security, one additionally requires the simulator to be efficient.
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It then follows from the triangle inequality of the metric that π′π constructs
T� from R♯ within ε+ ε′,

R♯
π′π,ε+ε′−−−−−→ T� .

A similarly statement holds for parallel composition. Let π and π′ construct
S♦ and S′� from R♯ and R′

♭ within ε and ε′, respectively, i.e.,

R♯
π,ε−−→ S♦ and R

′
♭
π′,ε′−−−→ S

′
� .

If these resources and protocols are composed in parallel, we find that π‖π′
constructs S♦‖S′� from R♯‖R′

♭ within ε+ ε′,

R♯‖R′
♭

π‖π′,ε+ε′−−−−−−→ S♦‖S′� .

Proofs of these statements can be found in [MR11,Mau12].

A.3 Instantiation

As stated at the beginning of this section, the AC framework [MR11] specifies
only the necessary axioms that resources and converters must satisfy so
that one can prove that the resulting notion of construction is composable.
Modeling concrete systems such as those in Figures 1, 2, 3 or 4, requires
an instantiation of the framework with mathematical objects that capture
interactive quantum information-processing systems. Such an instantiation
has been given in [PMM+17] and proven to satisfy the axioms of AC, where
the interactive systems are called causal boxes.

Unlike the model of systems used in quantum UC [Unr10], in which the
output of a system is given by a quantum message and a classical string
denoting a recipient, causal boxes allow messages to be sent to a superposi-
tion of different players; they even allow superpositions of different numbers
of messages to be generated in superpositions of different orders [PMM+17].
This generality is however not needed in the current work, because all con-
verters and resources involved in the construction of secure channels have
a very simple structure. For this work, a system S can be modeld as hav-
ing internal memory Hmem, and sets of in-ports In and out-ports Out with
message spaces {Hin

i }i∈In and {Hout
o }o∈Out, respectively. Furthermore, upon

receiving a message at i ∈ In, S always produces outputs at a fixed set of
out-ports Oi ⊆ Out such that Oi ∩ Oj = ∅ if i 6= j. A system S is thus
entirely described by a set of completely positive, trace-preserving (CPTP)
maps

{

Ei : L
(

Hin
i ⊗Hmem

)

→ L
(

Hmem ⊗Hout
Oi

)}

i∈In
, (11)

where Hout
Oi

=
⊗

o∈Oi
Hout
o and L(H) is the space of linear operators on H.

Upon receiving a message at some port i ∈ In, the system S then applies the
map Ei and outputs the messages in the registers Oi.
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For a fixed order of messages received, this specific type of system has
been called a quantum strategy [GW07, Gut12], quantum comb [CDP09] or
operator tensor [Har11, Har12, Har15] — here we use the terminology from
[CDP09], namely comb. A comb can be represented more compactly as a
single CPTP map E : L(HIn) → L(HOut), and using the composition rules
for combs [CDP09,Har12] or causal boxes [PMM+17], two such systems can
be composed to obtain a new system of the same type. The exact formula
for composing systems is not needed in the current work; in all special cases
where we connect two systems, the resulting system can easily be worked
out by hand. We refer the interested reader to [CDP09, Har12, PMM+17]
for the generic cases.

As mentioned at the end of Appendix A.1 we use a distinguisher metric
to define the distance between two systems R and S. This means that
another system D, a distinguisher, is given access to either R or S, and
has to guess to which of the two it is connected. Let D[R] and D[S] be the
binary random variables corresponding to D’s guess, then the distinguishing
advantage between R and S for this specific distinguisher is given by

dD(R, S) := |Pr[D[R] = 0]− Pr[D[S] = 0]| ,

and the distance is given by

d(R, S) := sup
D

dD(R, S) ,

where the supremum is taken over all distinguishers allowed by quantum
mechanics16 — it has been proven in [PMM+17] that d(·, ·) is indeed a metric.

Due to the simple structure of the systems considered in this work, the
distinguishing metric can be reduced to the following strategy — for the
general case of the distinguishing metric between causal boxes we refer the
reader to [PMM+17]. Let the distinguisher have internal memory HR. It
choses an in-port i1, and prepares a state ρRA1

. The A1 part is sent to the
system at the i1 port. It then receives the output on ports Oi1 , which it
appends to its internal memory. It measures its internal memory to decide
on the next in-port i2, applies a map F1 : L(HR) → L(HRA2

), and inputs
the A2 part at the corresponding port. This process is repeated until there
are no more unused ports, after which it measures its internal memory and
produces one bit of output, its final guess. In the case where the two systems
being compared only have one in-port, this metric reduces to the diamond
norm. And if the systems have no in-port (or one trivial in-port of dimension
1), this results in the trace-distance between the states output by the two
systems.

16In the computational setting one would restrict the set of distinguishers to those that
are efficient. In our information-theoretic setting the distance is defined over unbounded
distinguishers as well.
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B Unitary designs

The concept of a unitary 2-design was originally proposed in [Dan05,DCEL09].
The following (equivalent) definition is taken from [GAE07].

Definition B.1 (Unitary 2-design [Dan05, DCEL09, GAE07]). A unitary
2-design is a finite set of unitaries {Vj}j∈J on H = Cd such that for all
ρ ∈ L(H⊗H)

1

|J |
∑

j∈J

(Vj ⊗ Vj)ρ(V †
j ⊗ V

†
j ) =

∫

V (d)
(V ⊗ V )ρ(V † ⊗ V †)dV , (12)

where dV is the Haar measure. Equivalently, {Vj}j∈J is a unitary 2-design
if for any quantum channel Λ : L(H)→ L(H) and state ρ ∈ L(H),

1

|J |
∑

j∈J

V †
j Λ
(

VjρV
†
j

)

Vj =

∫

V (d)
V †Λ

(

V ρV †
)

V dV . (13)

One way to construct a unitary 2-design is by finding a set of unitaries
{Uk}k∈K that map all non-identity Paulis to each other with equal frequency,
i.e., ∀Pℓ, Pℓ′ such that Pℓ 6= I and Pℓ′ 6= I,

∣

∣

∣

{

k ∈ K : UkPℓU
†
k = eiθℓ,ℓ′,kPℓ′

}∣

∣

∣
=
|K|

d2 − 1
, (14)

where eiθℓ,ℓ′,k is some global phase and d is the dimension of the Hilbert
space. A unitary 2-design is then obtained by composing these unitaries
with Paulis, i.e., the set {PℓUk}ℓ,k is a unitary 2-design. This has been used
in [DCEL09] to show that the Clifford group is a unitary 2-design, and is
further discussed in [GAE07].

Chau [Cha05] finds a set {Uk}k∈K satisfying Eq. (14). To understand
his construction, we must view the indices x and z of a Pauli operator Px,z

as elements of a Galois field x, z ∈ GF(d). Let M =

(

α β
δ γ

)

∈ SL(2, d)

be any element of the special linear group of 2 × 2 matrices over the finite
field GF(d), i.e., matrices with determinant 1. Chau then finds unitaries
UM such that

UMPx,zU
†
M = eiθPαx+βz,δx+γz ,

for some global phase eiθ that may depend on M,x, z, where the arithmetic
in the indices is done in GF(d). By considering the entire set SL(2, d) one
can verify that Eq. (14) is satisfied. Since |SL(2, d)| = d3 − d, we need
log(d3−d) ≤ 3 log d bits of key to chose the unitary. We now show that this
set is a strong purity testing code.

Lemma B.2. Any set {Uk}k∈K satisfying Eq. (14) with d = 2m+n is a
strong purity testing code with ε = 2−n.
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Proof. An error Pℓ is not detected if it is mapped to Pℓ′ = Px,z ⊗ P0,z′ .
There are 22m+n − 1 such Paulis Pℓ′ which are not identity. Since the uni-
taries {Uk}k∈K are constructed to map Pℓ to all non-identity Pℓ′ with equal

frequency, then 22m+n−1
22m+2n−1

≤ 2−n of them will not detect Pℓ.

A unitary t-design is defined similarly to a unitary 2-design, except that
it has a t-fold tensor product instead of a 2-fold tensor product in Eq. (12).
Intuitively, if a unitary 2-design is a good quantum authentication scheme,
then so should any (approximate) unitary t-design for any t ≥ 2. One can
however not directly apply our proof to unitary t-designs. This is because
we use Eq. (14) as an intermediary step, to show that a unitary 2-design
is a strong purity testing code. Eq. (14) is also satisfied by unitary 3-de-
signs (given by the Clifford group [Zhu15, Web15]), but not necessarily for
t ≥ 4, where the unitaries are not elements of the Clifford group anymore.
One can however show directly from Eq. (13) that a unitary 2-design is a
strong purity testing code, and since all (approximate) unitary t-designs
(approximately) satisfy Eq. (13), they can all be used to construct quan-
tum authentication schemes that have the same key recycling properties as
unitary 2-designs.17

Lemma B.3. Any δ-approximate t-design with t ≥ 2 is a strong purity
testing code with error δ + 2−n.

Proof. To prove that a set of unitaries is a strong purity testing code, one has
to show that it can be used to detect all non-identity Pauli errors with high
probability. Setting Λ(ρ) = PℓρPℓ for a non-identity Pauli Pℓ in Eq. (13),
one can show that that the RHS becomes (see, e.g., [DCEL09]),

d

d2 − 1
1− 1

d2 − 1
ρ .

If d = 2m+n, ρ = ρ′ ⊗ |0〉〈0| where ρ′ is the first m qubits of ρ and the last
n qubits are used as syndrome, then the probability of obtaining 0 when
performing a measuring in the computational basis on the syndrome is

d22−n

d2 − 1
− 1

d2 − 1
≤ 2−n .

Thus, if the distance between the LHS and RHS of Eq. (13) is δ, then the
probability of not detecting a Pauli error is less than δ + 2−n.

17The reason we used Eq. (14) and not Eq. (13) to prove the security of the unitary 2-
design scheme, is that Chau’s construction [Cha05] is a subset of a unitary 2-design that
satisfies Eq. (14) but not Eq. (13). We still have to compose it with a random Pauli to
obtain the unitary 2-design.
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C Technical lemma

The following lemma is used in the proof of Theorem 3.5 to bound the trace
distance between two states with the 2-norm.

Lemma C.1. Let |ψ〉 and |ϕ〉 be two subnormalized states. Then

1

2
‖|ψ〉〈ψ| − |ϕ〉〈ϕ|‖tr ≤ ‖|ψ〉 − |ϕ〉‖ , (15)

where ‖|a〉‖ =
√

〈a|a〉 is the vector 2-norm.

Proof. It was shown in [Ren05, Lemma A.2.3] that if 〈ψ|ϕ〉 is real, then

‖|ψ〉〈ψ| − |ϕ〉〈ϕ|‖tr = ‖|ψ〉 − |ϕ〉‖ · ‖|ψ〉+ |ϕ〉‖ .

For complex 〈ψ|ϕ〉 we define |ϕ′〉 := 〈ϕ|ψ〉
|〈ϕ|ψ〉| |ϕ〉. It then follows from [Ren05,

Lemma A.2.3] that

‖|ψ〉〈ψ| − |ϕ〉〈ϕ|‖tr =
∥

∥|ψ〉〈ψ| −
∣

∣ϕ′
〉〈

ϕ′
∣

∣

∥

∥

tr
=
∥

∥|ψ〉 −
∣

∣ϕ′
〉
∥

∥ ·
∥

∥|ψ〉+
∣

∣ϕ′
〉
∥

∥ .

To prove this lemma it remains to show that

∥

∥|ψ〉 −
∣

∣ϕ′
〉
∥

∥ ·
∥

∥|ψ〉+
∣

∣ϕ′
〉
∥

∥ ≤ ‖|ψ〉 − |ϕ〉‖ · ‖|ψ〉+ |ϕ〉‖ ,

since combining this with ‖|ψ〉 + |ϕ〉‖ ≤ 2 we get Eq. (15).
Writing out the norms with the scalar product we obtain

‖|ψ〉 − |ϕ〉‖2 · ‖|ψ〉+ |ϕ〉‖2

= (〈ψ|ψ〉+ 〈ϕ|ϕ〉 − 〈ψ|ϕ〉 − 〈ϕ|ψ〉)(〈ψ|ψ〉+ 〈ϕ|ϕ〉+ 〈ψ|ϕ〉+ 〈ϕ|ψ〉)
= (〈ψ|ψ〉+ 〈ϕ|ϕ〉)2 − (〈ψ|ϕ〉+ 〈ϕ|ψ〉)2 .

Thus, using |〈ψ|ϕ〉| = 〈ψ|ϕ′〉 we get

‖|ψ〉 − |ϕ〉‖2 · ‖|ψ〉+ |ϕ〉‖2 −
∥

∥|ψ〉 −
∣

∣ϕ′
〉
∥

∥

2 ·
∥

∥|ψ〉+
∣

∣ϕ′
〉
∥

∥

2

=
(〈

ψ
∣

∣ϕ′
〉

+
〈

ϕ′
∣

∣ψ
〉)2 − (〈ψ|ϕ〉+ 〈ϕ|ψ〉)2

=
〈

ψ
∣

∣ϕ′
〉2

+
〈

ϕ′
∣

∣ψ
〉2 − 〈ψ|ϕ〉2 − 〈ϕ|ψ〉2

= 2|〈ψ|ϕ〉|2 − 〈ψ|ϕ〉2 − 〈ϕ|ψ〉2 ≥ 0 .

D Authentication without key recycling

The proof for authentication with key recycling provided in Section 3 is auto-
matically a proof for authentication without key recycling, since the players
do not have to reuse the key if they do not want to. But the parameters
are not optimal in this case, because recycling the key causes the error to
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change from ε to
√
ε. What is more, the proof given is only valid for strong

purity testing codes, since these are essential to be able to recycle all the
key. But if the users are not interested in recycling key, it is sufficient to use
weak purity testing codes. For completeness, we provide a proof here that
the entire family of quantum authentication protocols from [BCG+02] is se-
cure, i.e., they construct the secure channel Sm♭ , where Sm is the resource
considered before — which is drawn in Figure 5a — and ♭E is the obvious
filter which lets the message through.

Like in the case of key recycling, we can consider an encrypt-then-encode
and an encode-then-encrypt protocol, which are identical to Figures 7 and
8, except that the players use a weak purity testing code, do not recycle any
key and do not use an backwards authentic channel. Let the weak purity
testing code {Uk}k∈K have size log |K| = ν and error ε, and encode an m

qubit message in an m+n qubit cipher. As previously, let πq-authAB denote the

encode-then-encrypt converters and π̄q-authAB denote the encrypt-then-encode
version.

Lemma D.1. The converters πq-authAB for the encode-then-encrypt protocol
without key recycling construct the secure channel Sm♭ , given an insecure
quantum channel C� and a secret key Kν+2m+2n, i.e.,

C�‖Kν+2m+2n πq-auth

AB ,εq-auth−−−−−−−−→ S
m
♭ ,

with εq-auth = max{ε, 2−n}.

Proof. Correctness of the protocol is trivial, so we only need to consider
security. Just as in the proof of Theorem 3.5, the distinguisher has the
choice between providing the inputs in two orders, first a message for Alice,
then a (possibly modified) cipher at Eve’s interface, or first the cipher then
the message. In the latter case, the simulator always tells the ideal channel
to output an error; then when the ideal channel notifies the simulator that
a message has been input at Alice’s interface, the simulator outputs a fully
mixed state. This is exactly the same behavior as the simulator used in
the proof of Theorem 3.5, except that no key is output at any point. We
proved back then that the distinguisher has an advantage of at most 2−n

at distinguishing the real and ideal systems. The proof does not depend on
the purity testing code, it follows directly from the random Paulis Pℓ used
for decrypting and encrypting. So in particular, it is also valid when the
unitaries {Uk}k∈K form a weak purity testing code. Hence in the case of weak
purity testing codes without key recycling, the distinguishing advantage for
this order of messages is also bounded by 2−n.

The first case — when the distinguisher first provides a message at Al-
ice’s interface, then modifies the cipher— requires a different simulator and
different proof than that of Theorem 3.5 to go through with weak purity
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testing codes. The simulator we use also prepares n+ m EPR pairs |Φ〉CR,
but this time it picks a key k uniformly at random and applies Uk to the
halves in the C system, which it outputs at Eve’s interface. Upon receiving
the (possibly modified) system C ′ back from the distinguisher, it applies

the inverse U †
k , then measures in the Bell basis. Let the outcome of the

measurement be j′. If the Pauli Pj′ acts trivially on the M ′ subsystem of
C ′ = S′M ′ and only flips phases on S′ — i.e., Pj′ = P0,z ⊗ P0,0 — then the
simulator tells the ideal resource to output the message, otherwise it should
output an error.

Putting this together with the distinguisher that first prepares a state
|ψ〉ME, inputs the M part at Alice’s interface, receives some cipher in the
system C, applies a unitary UCE =

∑

j P
C
j ⊗ EEj to the CE system, and

inputs the modified C system back on the channel, we get the following final
state in the ideal case:

ζ = |acc〉〈acc| ⊗ 1

2ν

∑

k

∑

j∈Qk

[

(

IM ⊗ EEj
)

|ψ〉〈ψ|ME
(

IM ⊗
(

EEj
)†
)]

+ |rej〉〈rej| ⊗ 1

2ν

∑

k

∑

j /∈Qk

EEj ρ
E
(

EEj
)†
, (16)

where Qk is the set of Paulis that are not detected by the code and act
trivially on M , i.e., the j for which U †

kP
SM
j Uk = eiθk,jPS0,z ⊗ PM0,0.

In the real system, for the secret key (k, ℓ), the state before Bob’s mea-
surement of the syndrome is given by

|ϕk,ℓ〉SME =
∑

j

(

(

USMk
)†
PSMℓ PSMj PSMℓ USMk ⊗ EEj

)

|0〉S |ψ〉ME

=
∑

j

(−1)(j,ℓ)Sp
(

(

USMk
)†
PSMj USMk ⊗ EEj

)

|0〉S |ψ〉ME

=
∑

j

(−1)(j,ℓ)Speiθk,j
(

PSMk(j) ⊗ EEj
)

|0〉S|ψ〉ME ,

where we denote by k(j) the index of the Pauli operator such that U †
kPjUk =

eiθk,jPk(j). Summing over k and ℓ, the state before Bob’s measurement is
given by

1

2ν+2m+2n

∑

k,ℓ

|ϕk,ℓ〉〈ϕk,ℓ|SME

=
1

2ν+2m+2n

∑

j1,j2,k,ℓ

(−1)(j1⊕j2,ℓ)Speiθk,j1−iθk,j2
(

PSMk(j1) ⊗ E
E
j1

)

(

|0〉〈0|S ⊗ |ψ〉〈ψ|ME
)(

PSMk(j2) ⊗
(

EEj2
)†
)

=
1

2ν

∑

j,k

(

PSMk(j) ⊗ EEj
)(

|0〉〈0|S ⊗ |ψ〉〈ψ|ME
)(

PSMk(j) ⊗
(

EEj
)†
)

,
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where we used Eq. (2). The measurement of S yields |acc〉 if PSMk(j) = PS0,z′ ⊗
PMx,z, i.e., j ∈ Pk, where Pk denotes the set of Paulis that are not detected
by the code k. Hence, the final state held by the distinguisher after Bob’s
measurement is given by

ξ = |acc〉〈acc| ⊗ 1

2ν

∑

k

∑

j∈Pk

[(

PMk(j) ⊗ EEj
)

|ψ〉〈ψ|ME
(

PMk(j) ⊗
(

EEj
)†
)]

+ |rej〉〈rej| ⊗ 1

2ν

∑

k

∑

j /∈Pk

EEj ρ
E
(

EEj
)†
. (17)

The distinguishability between the real and ideal systems is given by the
trace distance between Eqs. (16) and (17), namely

1

2
‖ξ − ζ‖tr =

1

2

∥

∥

∥

∥

∥

∥

1

2ν

∑

k

∑

j∈Pk\Qk

[(

PMk(j) ⊗ EEj
)

|ψ〉〈ψ|ME
(

PMk(j) ⊗
(

EEj
)†
)]

∥

∥

∥

∥

∥

∥

tr

+
1

2

∥

∥

∥

∥

∥

∥

1

2ν

∑

k

∑

j∈Pk\Qk

EEj ρ
E
(

EEj
)†

∥

∥

∥

∥

∥

∥

tr

≤ 1

2ν

∑

k

∑

j∈Pk\Qk

tr
(

EEj ρ
E
(

EEj
)†
)

=
∑

j

tr
(

EEj ρ
E
(

EEj
)†
) |{k : j ∈ Pk \ Qk}|

2ν
≤ ε .

It follows from this and Lemma 3.3 that the encrypt-then-encode proto-
col is also secure.

Corollary D.2. The converters π̄q-authAB for the encrypt-then-encode protocol
without key recycling construct the secure channel Sm♭ , given an insecure
quantum channel C� and a secret key Kν+2m+n, i.e.,

C�‖Kν+2m+n π̄q-auth
AB ,εq-auth−−−−−−−−→ S

m
♭ ,

with εq-auth = max{ε, 2−n}.
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