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We show that the Fixed Alphabet Shortest Common Supersequence (SCS) and

the Fixed Alphabet Longest Common Subsequence (LCS) problems parameterized

in the number of strings are W [1]-hard. Unless W [1] = FPT , this rules out the existence

of algorithms with time complexity of O(f(k)nα) for those problems. Here n is the size

of the problem instance, α is constant, k is the number of strings and f is any function of

k. The fixed alphabet version of the LCS problem is of particular interest considering the

importance of sequence comparison (e.g. multiple sequence alignment) in the fixed length

alphabet world of DNA and protein sequences.
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1. INTRODUCTION

The Shortest Common Supersequence (SCS) and the Longest Common

Subsequence (LCS) are classical problems in computer science.

Shortest Common Supersequence (SCS)
Instance: A set of strings R = r1, r2, ..., rk over an alphabet Σ, an
integer λ.
Question: Does there exist a string s ∈ Σ∗ of length at most λ, that
is a supersequence 1 of each string in R?

Longest Common Subsequence (LCS)
Instance: A set of strings R = r1, r2, ..., rk over an alphabet Σ, an
integer λ.
Question: Does there exist a string s ∈ Σ∗ of length at least λ, that
is a subsequence 2 of each string in R?

The LCS and (not so much) the SCS problems have been extensively studied over
the last 30 years (see [7] and references). They are both known to be NP-complete
[8, 9]. In particular the case where the number of sequences is 2 has been studied
in detail (see [7] and references).

1A string a is a supersequence of a string b if we can delete some characters in a such that the
remaining string is equal to b, e.g. “1234” is a supersequence of “13”.

2A string a is a subsequence of a string b if b is a supersequence of a, e.g. “13” is a subsequence
of “1234”.
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1.1. Sequence Comparison in Bioinformatics

With the recent availability of large amounts of molecular sequence data, the
LCS and related problems received much attention due to the importance of se-
quence comparison problems in bioinformatics.

(from [6]) Sequence comparison is used by biologists for several reasons.
Similarity between a set of molecular sequences may indicate signifi-
cant attributes between organisms the sequences represent. Or, from
the similarity and disparity of these sequences, it may be possible to in-
fer phylogenetic relationships amongst the organisms. If the sequences
represent homologous genes, the comparison may be used to obtain in-
formation on molecular structure or function.
. . .
Computationally, multiple sequence comparison problems are viewed as
string matching problems.

However, due to the O(nk) time requirements [1, 5, 7] of the best known algorithms
for these analyses, the number of sequences that can be examined at once is often
limited to less than six.

1.2. Parameterized Complexity

The problems were also studied in the framework of parameterized complexity
(see [4] for a survey). The hope was to find algorithms that have running times expo-
nential in only some parameters of the problem. In [2, 3, 6] several parametrizations
of the SCS and LCS problem were analyzed.

Parameterized Shortest Common Supersequence (SCS)
Instance: Alphabet Σ, set of strings R = r1, r2, ..., rk ∈ Σ∗, integer λ.
Parameter: k. (SCS-1)
Parameter: λ. (SCS-2)
Parameter: k, λ. (SCS-3)
Parameter: k, |Σ|. (SCS-4)
Question: Does there exist a string s ∈ Σ∗ of length at most λ, that
is a supersequence of each string in R?

Parameterized Longest Common Subsequence (LCS)
Instance: Alphabet Σ, set of strings R = r1, r2, ..., rk ∈ Σ∗, integer λ.
Parameter: k. (LCS-1)
Parameter: λ. (LCS-2)
Parameter: k, λ. (LCS-3)
Parameter: k, |Σ|. (LCS-4)
Question: Does there exist a string s ∈ Σ∗ of length at least λ, that
is a subsequence of each string in R?

The complexity of the parameterized variants of the LCS problem 3 are shown in
Figure 1. Note that all variants become fixed parameter tractable as soon as λ
and Σ are bounded (i.e. they are either a parameter or constant), this is by the
trivial algorithm that generates all |Σ|λ possible subsequence strings and checks
them against each ri. Similar results are known for the SCS problem (see [6]). One

3FLCS is named LCS-5 in [3]
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Alphabet Size |Σ|
Parameter Unbounded Parameter Constant

LCS-1 LCS-4 FLCS
k W[t]-hard for t ≥ 1 W[t]-hard for t ≥ 1 W [1]-hard

[3] [2] (below)
LCS-2

λ W[2]-hard FPT FPT
[3]

LCS-3
k, λ W[1]-complete FPT FPT

[3]

FIG. 1 The Fixed-Parameter Complexity of the LCS Problem

gets another interesting parameterization if the size of the alphabet Σ is a fixed
constant.

Fixed Alphabet Shortest Common Supersequence parameter-
ized in the number of Strings (FSCS)
Instance: A fixed size alphabet Σ, set of strings R = r1, r2, ..., rk ∈ Σ∗,
integer λ
Parameter: k
Question: Does there exist a string s ∈ Σ∗ of length at most λ that
is a supersequence of each string in R?

Fixed Alphabet Longest Common Subsequence parameterized
in the number of Strings (FLCS)
Instance: A fixed size alphabet Σ, set of strings R = r1, r2, ..., rk ∈ Σ∗,
integer λ
Parameter: k
Question: Does there exist a string s ∈ Σ∗ of length at least λ that
is a subsequence of each string in R?

(from [2]) The most compelling of these problems (LCS-1, LCS-2,

LCS-3 and FLCS) is FLCS, since the alphabet for biological sequences
is often of fixed constant size, e.g. DNA and protein sequences have
alphabets of size 4 and 20, respectively.
. . .
Our failure to find a hardness result for FLCS invites hope that it could
be fixed-parameter tractable.

We will show that this is unfortunately not the case, namely that

Theorem 1. The Fixed Alphabet Shortest Common Supersequence

problem parameterized in the number of Strings is W [1] hard.

and

Theorem 2. The Fixed Alphabet Longest Common Subsequence prob-
lem parameterized in the number of Strings is W [1] hard.
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We will prove Theorems 1 and 2 by first showing the W [1] completeness for
a problem we call Partitioned Clique. Then a parameterized reduction from
Partitioned Clique to FSCS is shown; finally we show how this reduction can
be changed to get a reduction to FLCS instead.

2. W [1] COMPLETENESS FOR PARTITIONED CLIQUE

The Clique and the Partitioned Clique problem are defined as follows.

Clique

Instance: A simple graph G = (V, E), and integer k.
Parameter: k.
Question: Is there a subset V ′ ⊆ V of cardinality k such that ∀u, v ∈
V ′, (u, v) ∈ E?

Partitioned Clique (pClique)

Instance: A simple graph G = (V, E), an integer k, a partition
{U1, ..., Uk} of V into k sets of equal size. 4

Parameter: k.
Question: Is there a subset V ′ ⊆ V of cardinality k such that ∀u, v ∈
V ′, (u, v) ∈ E and ∀i ∈ {1, .., k} : |V ′ ∩ Ui| = 1?

Theorem 3. Partitioned Clique is W [1] complete.

We first show W [1]-hardness of pClique reducing to it the W [1]-complete problem
Clique (see e.g. [4]). Then we show that pClique is in W [1] by a reduction in
the other direction (for the following we actually only need W [1] hardness, we will
prove completeness anyway because it’s easy).

Theorem 4. Partitioned Clique is W [1] hard.

Proof. Given an instance (G = (V = {v1, . . . , vn}, E), k) of the Clique problem
we construct an instance (G′ = (V ′, E′), k, {U ′

1, ..., U
′
k}) for the pClique problem

as follows. Every set U ′
j = {uj

1, . . . , u
j
n} consists of n = |V | vertices, we will say

that a vertex uj
i ∈ U ′

j corresponds to vertex vi ∈ V . There is an edge (ui
x, uj

y) ∈ E′

iff (vx, vy) ∈ E. To see that this a correct reduction we must show that

(G = (V, E), k) ∈ Clique ⇐⇒ (G′ = (V ′, E′), k, {U1, ..., Uk}) ∈ pClique

⇒ If G has a Clique C of size k, we can assign every vertex from C to the
corresponding vertex in a different set U ′

i . By the construction, these vertices form
a pClique in G′.
⇐ If we are given a pClique C′, then all vertices in C′ correspond to a different
vertices in G (two vertices that correspond to the same vertex in G are not adjacent
in G′), and those vertices build a Clique in G by the construction.

Theorem 5. Partitioned Clique is in W [1].

Proof. Given an Instance (G′, V ′, {U ′
1, . . . , U

′
k}) for pClique, construct an in-

stance (G, V ) for Clique by removing all edges from G′ between vertices that are
in the same set U ′

i . This does not change the size of pClique. Now every Clique

of G is also a pClique in G′.
4Note that |V | must be a multiple of k.
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3. W [1] HARDNESS FOR FIXED ALPHABET SHORTEST COMMON

SUPERSEQUENCE

In this section we show a reduction from an instance of pClique to an instance
of FSCS.

3.1. Notation and Definitions

We reduce from the instance

G = (G = (V, E), k, {U1, .., Uk}) (1)

of pClique to the instance

S = (S = {s1, .., sk, st}, λ) (2)

of FSCS.
The fixed size alphabet Σ for FSCS is the binary alphabet {0, 1}. We define n and
m as

n = |V | (3)

m = |Ui| =
n

k
(4)

We denote the vertices V by {v1, v2, . . . , vn}. W.l.o.g. we assume that the set U1

contains the first m vertices {v1, . . . , vm}, U2 the next m vertices {vm+1, . . . , v2m}
and so on. We will also write vi

j for v(i−1)m+j , the j’th vertex in the set Ui and vi

to denote any vertex in Ui. We write q[i] for the i’th character in a string q and
q[i . . . j] for the substring 5 of q starting at the i’th and ending at the j’th character.

Definition 1 (alignment, optimal alignment). Let s be a supersequence for a
set of strings S. An alignment of S for s is a map φ : (q ∈ {S∪s}, i ∈ N) → j ∈ N.
It assigns to the i’th character in a string q ∈ {S ∪ s} 6 an index j = φ(q, i) : 1 ≤
j ≤ |s| such that q[i] = s[j] and ∀i : φ(q, i) < φ(q, i+1). We say that two characters
q[i] and q′[i′] from two different strings {q, q′} ∈ {S ∪ s} align if φ(q, i) = φ(q′, i′).
We say that an alignment is optimal if every supersequence for S has length at
least |s|.

Definition 2 (map, overlap). Given an alignment φ of S for s, we say that a
substring q′ of q ∈ {S ∪ s} maps on a substring r′ of r ∈ {S ∪ s} if ∀i∃j : φ(q′[i]) =
φ(r′[j]). Note that if q′ maps on r′, q′ must be a subsequence of r′ and that every
q′ maps on s. We say that q′ overlaps with r′ if ∃i∃j : φ(q′[i]) = φ(r′[j]).

We give a small example for the above definitions. Let s = 010011 and S =
{a = 1011, b = 101, c = 001}. Let φ be the alignment of S for s shown below
(φ(a, 1) = 2, φ(a, 2) = 4, . . .).

s = 0 1 0 0 1 1
a = 1 0 1 1
b = 1 0 1
c = 0 0 1

5A string a is a substring of a string b if b = uav for some strings u and v, e.g. “34” is substring
of “1234”

6If q = s we simply have φ(s, i) = i, the definition of φ for s is redundant, we do it as to avoid
a special treatment for s in the definition of ”align” and ”map” below.
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Here b maps on a. c overlaps with, but does not map on a. The substring c[2 . . . 3]
of c maps on a. b[2] aligns with c[2].

3.2. The FSCS Instance

We define the following strings from which we will construct our instance for
FSCS (

∏n
j=1 aj denotes the concatenation of the strings a1 . . . an)

I = 17n3
(5)

O = 07n3
(6)

E(u ∈ V, v ∈ V ) =
{

II if (u = v) or (u ∈ Ui, v ∈ Uj) ∈ E : i 6= j
I0I otherwise (7)

V(u ∈ V ) =
∏n

j=1 E(u, vj) (8)

Bi = V(vi
1)

∏m
j=2 OV(vi

j) (9)
TI0I = (I0I)n (10)
TII = (II)n (11)
T = (TI0IO)m−1TII (12)

The Instance S = {s1, . . . , sk, st, λ} for FSCS is 7

si = (BiO)2n+2n2Bi

st = (T O)1+2n+2n2
(TI0IO)m−2TI0I

3.3. Outline of the proof

Let sopt be a shortest common supersequence for S.8 In order to prove our main
Theorem 1 we will prove the following Lemmas:

Lemma 1. If G ∈pClique
9 then there is a string sλ of length λ that is a

supersequence of all strings in S. (or equivalently S ∈FSCS). 10

Lemma 2. If G 6∈pClique then |sopt| > λ (or equivalently S 6∈FSCS).

We will first prove Lemma 1 by showing how to construct a sequence sλ of length
λ that is a supersequence of all strings in S under the assumption that G ∈pClique.
sλ is similar to st, only the 1 + 2n + 2n2 occurrences of a TII substring in st are
replaced by a substring M in sλ. This M differs from TII by n− k additional 0’s.
We then have |sλ| = |st| + (1 + 2n + 2n2)(n − k) = λ. To prove Lemma 2 we first
show that in an optimal alignment at least (1+2n2) occurrences of a TII substring
in st map, for all i : 1 ≤ i ≤ k, to a V(vi) : vi ∈ Ui substring from si, we will call
these TII ’s nice. Because we can’t choose those vi such that they form a pClique,
we show that, for every nice TII , we have at least n− k + 1 0’s in sopt that do not
align with a character in st. This gives a lower bound |st|+(1+2n2)(n−k+1) > λ
for |sopt| which is bigger than λ.

7A concrete example will be given in section §3.5.
8More precisely, let sopt be any string that is a supersequence of all strings in S and has

minimal possible length.
9G ∈pClique means that G has a pClique of size k and S ∈FSCS means that S has a shortest

common supersequence of length at most λ.
10sλ is not necessarily a shortest supersequence for S
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3.4. Indices

In this section we will prove a simple Claim (Claim 3) that will be useful for
the following sections.
For a string P of the form 11

P =
n∏

j=1

(IXI)j : (IXI)j ∈ {II, I0I} (13)

we will say that that P has a 0 at index j if (IXI)j = I0I. Let C = {v1, v2, . . . , vk} :
vi ∈ Ui and let JC = {j1, j2, . . . , jk} be the indices of the vertices in C (this is to
say vi = vji). Let J0

C be the indices where no string V(vi) : vi ∈ C has a 0. 12

Claim 1. J0
C ⊆ JC

Proof. Let j 6∈ JC , we will show that then j 6∈ J0
C . For some i, vj is in the

same set Ui as vi ∈ C. vi 6= vj because the index ji is in JC but j isn’t. Now
E(vi, vj) = I0I (7,8) and so V(vi) has a 0 at index j.

Claim 2. C is a pClique if and only if JC ≡ J0
C .

Proof.
Case 1: Assume C is a pClique. For any vi ∈ C and any j ∈ JC we either have
vi = vj or there is an edge between vi and vj . In both cases E(vi, vj) = II so V(vi)
has no 0 at index j (7,8). We have shown that JC ⊆ J0

C and with J0
C ⊆ JC from

the previous Claim we have JC ≡ J0
C .

Case 2: Assume C is not a pClique. Then there are two non adjacent vertices
{vh, vi} ∈ C. Now E(vh, vi) = I0I (7,8) and V(vh) has a 0 at index ji. So ji 6∈ J0

C ,
but ji ∈ JC from which JC 6≡ J0

C follows.

Claim 3. If C is a pClique |J0
C | = k otherwise |J0

C | < k.

Proof. The Claim trivially follows from the two Claims above.

3.5. Proof of Lemma 1

UU

U
v vv

v

v

v

v

v

v

1

2

3

4

5

6

7 8 9

1 2

3

FIG. 2 an instance (G, k = 3, {U1 = {v1, v2, v3}, U2 = {v4, v5, v6}, U3 =
{v7, v8, v9}}) for pClique. The vertices {v2, v6, v7} form a pClique of size 3.

For this section we will assume that G ∈pClique. Let C = {v1, v2, . . . , vk} :
vi ∈ Ui be a pClique. In Figure 3.5 we have an example where C = {v2, v6, v7}.

11e.g. Vi, TII and TI0I are of this form.
12Or more formally ∀(j ∈ J0

C)∀(vi ∈ C) : V(vi) has no 0 at index j
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Let JC = {j1, j2, . . . , jk} be the indices of the vertices in C (for our example JC =
{2, 6, 7}). Let sλ be the string st with the only distinction that all 1 + 2n + 2n2

occurrences of a TII substring are replaced by the substring M (defined below).

M =
n∏

j=1

{
II if j ∈ JC

I0I otherwise (14)

Claim 4. For all vi ∈ C, M is a supersequence of V(vi).

Proof. M and V(vi) are both of type (13). M has a 0 at all indices except JC ,
but at the indices JC also no V(vi) has a 0 (Claim 3). The Claim now follows from
the observation that I0I is a supersequence of II.

Claim 5. sλ is a supersequence of all strings in S = {s1, . . . , sk, st}.

Proof. Because M is a supersequence of TII , sλ is a supersequence of st. We
now must show that for all i : 1 ≤ i ≤ k, sλ is a supersequence of si. We can map
si on sλ

13 such that (see example below)

1. Every V(vi) substring in si maps on a M substring in st (see Claim 4).

2. Every V(v) : v 6= vi substring in si maps on a TI0I substring in st. (Note
that for every vertex v ∈ V , TI0I is a supersequence of V(v)).

3. Every O substring in si maps on a O substring in sλ.

The reader may convince himself that by the definition of sλ and si this can always
be done. An example is given below.

In Figure 3.5 an Instance for the pClique problem is given. An alignment of
S for sλ appears as follows: 14

st = TI0I O TI0I O
 
TII O TI0I O TI0I O

!2n2+2n

TII O TI0I O TI0I

s1 = V(v1) O
 
V(v2) O V(v3) O V(v1) O

!2n2+2n

V(v2) O V(v3)

s2 = V(v4) O V(v5) O
 
V(v6) O V(v4) O V(v5) O

!2n2+2n

V(v6)

s3 =

 
V(v7) O V(v8) O V(v9) O

!2n2+2n

V(v7) O V(v8) O V(v9)

sλ= TI0I O TI0I O
 
M O TI0I O TI0I O

!2n2+2n

M O TI0I O TI0I

The alignment of TII , the V(vi)’s and M appears as follows

TII = I I I I I I I I I I I I I I I I I I
V(v2) = I0I I I I0I I I I0I I I I I I0I I0I
V(v6) = I0I I I I0I I0I I0I I I I I I0I I0I
V(v7) = I0I I I I0I I0I I I I I I I I0I I0I
M = I0I I I I0I I0I I0I I I I I I0I I0I

Proof of Lemma 1. Lemma 1 follows from Claim 5, we only have to check if
sλ has indeed length ≤ λ. sλ differs from st by n− k additional 0’s in every of the
1+2n+2n2 TII substrings from st

15 and so has length |st|+(1+2n+2n2)(n−k) =
λ.

13If we can map si on sλ then sλ must be a supersequence of si
14The alignment is not unique
15a 0 at all n indices except at the k indices JC
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3.6. Proof of Lemma 2

In this section we prove that if G does not have a pClique of size k, then the
shortest common supersequence sopt of the instance FSCS constructed from G must
have length larger than λ.
All claims in this section relate to an optimal alignment. To save on notation, in
the sequel we will write

TIXI for either a TII or a TI0I substring from st

Vi for a V(vi) substring from si

Observation 1. By replacing every TII with TI0I in st, we get a string sup that
is a supersequence for every string in S. So |sup| is an upper bound for |sopt|. We
will need the following inequalities :
|sup| = |st| + (1 + 2n + 2n2)n < |st| + 7n3 − n = |st| + |O| − n < |st| + |I|

Observation 2. sopt has less than |I| more 1’s than st, otherwise |sopt| ≥ |st| +
|I| > |sup|. 16

Observation 3. sopt has less than |O| − n more 0’s than st, otherwise |sopt| ≥
|st| + |O| − n > |sup|.

Claim 6. ∀i : No TIXI may overlap with two different Vi’s.

Proof. Note that two Vi’s are separated by at least one O block and TIXI has
either any or n 0’s. If a TIXI is aligned to two different Vi’s at most n 0’s from
O can align with a 0 from st, and we have |sopt| ≥ |st| + |O| − n contradicting
Observation 3.

Claim 7. ∀i : Every Vi overlaps with at least one TIXI.

Proof. If not, the 2|I| 1’s from that Vi are not aligned to any 1 from st (all 1’s
in st are in the TIXI ’s). Then sopt has at least 2|I| more 1’s than st contradicting
Observation 2.

Claim 8. ∀i : At most m − 1 Vi’s overlap with more than one TIXI.

Proof. Suppose more than m − 1 Vi’s do overlap with more than one TIXI ,
with Claim 7 and the observation that there are only m − 1 more TIXI ’s than
there are Vi’s we must have that at least one TIXI overlaps with two different Vi’s
contradicting Claim 6.

Definition 3 (nice TIXI , good Vi). We call a Vi good if it overlaps with ex-
actly one TIXI .
We call a TIXI nice, if, for all i : 1 ≤ i ≤ k, it overlaps with exactly one Vi, and
this Vi is good (overlaps with no other TIXI).

Claim 9. There are at least (1 + 2n2) nice TII’s.

Proof. For any i we have at most (m− 1) Vi’s that overlap with more than one
TIXI (Claim 8), all other Vi’s overlap with exactly one TIXI (Claim 7). With this
and the observation that there are m − 1 more TIXI ’s than there are Vi’s, we see
that at most 2(m − 1) TIXI ’s can fail to overlap with exactly one good Vi. If we

16This follows from the simple observation that if sopt has |I| more 1’s than st, at least |I| 1’s
from sopt cannot align with a character in st.
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sum over all i’s (1 ≤ i ≤ k) we get that at most 2(m−1)k TIXI ’s can fail to overlap
with exactly one good Vi for all i, or equivalently, can fail to be nice. Because the
TII ’s are a subset of the TIXI ’s, we also have that at most 2(m − 1)k < 2n TII ’s
are not nice, and so at least (1 + 2n + 2n2) − 2n TII ’s are nice.

Let A = {T ′
II ,V ′

1, . . . ,V ′
k} where T ′

II is nice and it overlaps with V ′
i for all i.

Claim 10. ∀i, j: A 0 from V ′
i never aligns with a 0 from V ′

j if the two 0’s don’t
have the same index.

Proof. Assume we have a 0 in V ′
i and a 0 in V ′

j with different indices that align.
This implies that at least 2|I| 1’s from V ′

i cannot align with 1’s from V ′
j and so q

has at least 2|I| more 1’s than |TII |. This is best seen by a small example. Assume
we align a 0 from V(v2) at index 3 with a 0 from V(v9) at index 2.

V(v2) = I0I I I I0I I I I0I I I I I I0I I0I
V(v9) = I I I0I I I I0I I0I I0I I0I I0I I I

Then any supersequence q of V(v2) and V(v9) must have 2|I| more 1’s than |TII |
e.g.

q = I0I I I I0I I I I0I I0I I0I I0I I0I I I
TII = I I I I I I I I I I I I I I I I I I

Now V ′
i and V ′

j may not overlap with any TIXI other than T ′
II (because T ′

II is
nice), but 1’s in st appear only in TIXI ’s, so we get at least 2|I| more 1’s in sopt

than in st contradicting Observation 2.

Claim 11. A 0 from a V ′
i ∈ A does not align with a 0 that is not from a string

in A.

Proof. When a 0 from V ′
i aligns with a 0 from sj that is not in V ′

j, this implies
that there are at least |I| more 1’s in sopt than in st (by an argument similar to
that in the previous Claim) contradicting Observation 2.

Proof of Lemma 2. Let sopt be a shortest common supersequence of S, where
S is constructed from an Instance (G, k, {U1, . . . , Uk}) which has no pClique of
size k. Let T ′

II be any nice TII that overlaps with {V ′(v1), . . . ,V ′(vk)} : vi ∈ Ui.
A 0 from a V ′(vi) may align only with 0’s from V ′(vj) with the same index (Claim
10 and 11). Because {v1, . . . , vk} can’t be a pClique, we have fewer than k indices
where no V ′(vi) has a 0 (Claim 3), and so sopt has at least n− k + 1 more 0’s than
st. This is the case for all of the at least 1 + 2n2 nice TII ’s (Claim 9). We now get
a lower bound for sopt that is bigger than λ.
|sopt| > |st| + (1 + 2n2)(n − k + 1) > |st| + (1 + 2n + 2n2)(n − k) = λ

Proof of Theorem 1. Theorem 1 follows from Lemmas 1 and 2. Note that the
reduction is a parameterized many-one reduction as required for the result (see [4]
for any details).

4. W [1] HARDNESS FOR FIXED ALPHABET LONGEST COMMON

SUBSEQUENCE

The reduction from pClique to FLCS is very similar to the reduction we
constructed for FSCS. We will only sketch it.
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The definitions of alignment, map, overlap and nice can be redefined for an
alignment of a subsequence in a natural way.

For any string X , let X denote the string we get when we replace all occurrences
of II in X by I0I and vice versa.

The instance L = (L = {l1, . . . , lk, lt}, γ) for FLCS is

li = (BiO)2n+2n2Bi

lt = TI0I(OT )2n+2n2

γ = |lt| − (1 + 2n + 2n2)(n − k)

Lemma 3. If G ∈pClique then there is a string lγ of length γ that is a subse-
quence of all strings in L (or equivalently L ∈FSCS).

Proof sketch. The proof is very similar to the proof of the Lemma 1. Let lγ be
the string lt where all (1 + 2n + 2n2) occurrences of a TI0I substring are replaced
by the substring M (see 14). lγ is a subsequence of all strings in L (proof omitted
but similar to proof of Claim 5). For the example from section §3.5 an alignment
appears as follows:

lt =

 
TI0I O TII O TII O

!2n2+2n

TI0I

l1 = V(v1) O
 
V(v2) O V(v3) O V(v1) O

!2n2+2n

V(v2) O V(v3)

l2 = V(v4) O V(v5) O
 
V(v6) O V(v4) O V(v5) O

!2n2+2n

V(v6)

l3 =

 
V(v7) O V(v8) O V(v9) O

!2n2+2n

V(v7) O V(v8) O V(v9)

lλ =

 
M O TII O TII O

!2n2+2n

M

M has length |TI0I | − (n − k), and so lγ is a subsequence of L of length γ.

Let C be defined as in section §3.4. Let J0
C be the indices where all strings V(vi) :

vi ∈ C have a 0. We have J0
C ≡ J0

C
17 because by the definition the string V(vi)

has a 0 at an index j if and only if V(vi) has no 0 at index j. We can now restate
Claim 3 by replacing J0

C with J0
C .

Claim 12. If C is a pClique |J0
C | = k otherwise |J0

C | < k.

The proofs of the Claims 13-18 below are omitted because they are similar to
the proofs of the Claims 6-11. 18 Note that the Claims 13-15 are almost identical
to the Claims 6-8 , only the roles of Vi (resp. Vi) and TIXI are interchanged. The
Claims 17 and 18 are identical to the Claims 10 and 11, only the V ’s are replaced
by V ’s. Claim 16 is identical to Claim 9, only TII is replaced by TI0I .

Claim 13. ∀i : No Vi may overlap with two different TIXI’s.

Claim 14. ∀i : Every TIXI overlaps with at least one Vi.

Claim 15. ∀i : At most m − 1 TIXI’s overlap with more than one Vi.

Claim 16. There are at least (1 + 2n2) nice TI0I’s.

17J0
C is defined in §3.4.

18In the sequel we will only need Claims 16-18, Claims 13-15 are only stated as to ease the
reproduction of the full proof.
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Let A = {T ′
I0I ,V ′

1, . . . ,V
′
k} where T ′

I0I is nice and it overlaps with V ′
i for all i.

Claim 17. ∀i, j: A 0 from V ′
i never aligns with a 0 from V ′

j if the two 0’s don’t
have the same index.

Claim 18. A 0 from a V ′
i ∈ A does not align with a 0 that is not from a string

in A.

Lemma 4. If G 6∈pClique then |lopt| < γ 19 (or equivalently L 6∈FSCS).

Proof. The proof is very similar to the proof of Lemma 2. Let lopt be a longest
common subsequence of L, where L is constructed from an Instance (G, k, {U1, . . . , Uk})
which has no pClique of size k. Let T ′

I0I be any nice TI0I that overlaps with
{V ′

(v1), . . . ,V ′
(vk)} : vi ∈ Ui. A 0 from a V ′

(vi) may align only with 0’s from
V ′

(vj) with the same index (Claim 17 and 18). Because {v1, . . . , vk} can’t be a
pClique, we have fewer than k indices where all V ′(vi) have a 0 (Claim 12), and
so lopt has at least n− k + 1 fewer 0’s than lt. This is the case for all of the at least
1 + 2n2 nice TI0I ’s (Claim 16). We now get an upper bound for lopt that is smaller
than γ
|lopt| < |lt| − (1 + 2n2)(n − k + 1) < |lt| − (1 + 2n + 2n2)(n − k) = γ

Proof of Theorem 2. Theorem 2 follows from Lemmas 3 and 4. Note that the
reduction is a parameterized many-one reduction as required for the result (see [4]
for any details).

5. CONCLUSION

We have shown that the Fixed Alphabet Shortest Common Superse-

quence (SCS) and the Fixed Alphabet Longest Common Subsequence

(LCS) problems parameterized in the number of strings are W [1]-hard.
Unless an unlikely collapse in the parameterized hierarchy occurs, this rules out

the existence of exact algorithms with running time f(k)nO(1) (i.e., exponential
only in k) for those problems. This does not mean that there are no algorithms
with much better asymptotic time-complexity than the known O(nk) algorithms
based on Dynamic Programming, e.g. algorithms with running time n

√
k are not

deemed impossible by our results.
The exact classification of the FSCS and FLCS problems within the parame-

terized hierarchy is left open. We have evidence 20 that leads us to the conjecture
that an exact classification of these problems (and many others) within the param-
eterized hierarchy is not possible, because they seem to be not even in W [P ], the
highest (reasonable) class these problems could be complete for.
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