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Abstract. The purpose of this paper is to justify the claim that a method for gener-
ating primes presented at EUROCRYPT’89 generates primes with virtually uniform
distribution. Using convincing heuristic arguments, the conditional probability dis-
tributions of the size of the largest prime factor p;(n) of a number n on the order of N
is derived, given that n satisfies one of the conditions 2n+1 is prime, 2an+1 is prime
for a given a, or the d integers uy, ..., uq, where u; = 2a.n + 1 and uy = 2a,u4—1 + 1
for 2 < t < d, are all primes for a given list of integers a;,...,aq. In particular, the
conditional probabilities that n is itself a prime, or is of the form “k times a prime”
for k =2,3,..., is treated for the above conditions. It is shown that although for all
k these probabilities strongly depend on the condition placed on n, the probability
distribution of the relative size o1(n) = logy p1(n) of the largest prime factor of n is
virtually independent of any of these conditions. Some number-theoretic conjectures
related to this analysis are stated. Furthermore, the probability distribution of the
size of the smaller prime factor of an RSA-modulus of a certain size is investigated.
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1. Introduction

At EUROCRYPT’89 a new method for generating cryptographic primes was pre-
sented by this author [6] that offers several advantages over all presently known meth-
ods for generating primes. The generated numbers are provable primes rather than
only pseudo-primes as for most common approaches [8, 13], certain security conditions
imposed upon the primes by the cryptosystem (e.g. RSA, Diffie-Hellman, ElGamal,
etc.) can easily be satisfied, and the method is faster than all previous methods for
generating primes or even only pseudo-primes. Moreover it is claimed in [6] that the
achieved distribution is virtually uniform over all primes in a given interval that satis-
fy the security conditions. This claim cannot be proved but it is based on convincing
heuristic arguments leading to some number-theoretic conjectures which may also be
of independent interest. The main aim of this paper is to state and justify these
conjectures and to explain their relation to cryptography. In this section, we give a
motivation for the questions treated in this paper.

It is often recommended [9] to select the RSA-primes of a very special form: Both
primes should have equally many binary digits, and they should be of the form 2p'+ 1
where p' is again a prime of the form 2p” + 1 and p” is a prime. Since the security of
the RSA system should rely on the general problem of factoring the product of two
large primes, and not on a very special case of this problem, it was recommended
[6] to select the RSA-modulus randomly from the set of all RSA-moduli that satisfy
certain reasonably restrictive security constraints, rather than to require that the
modulus is of a very special form. This recommendation is the motivation for the
analysis presented here.

The algorithm of [6] is based on a theorem by Pocklington [7] that allows one
to prove the primality of a number n, provided that one knows part of the prime
factorization of m — 1. More precisely, the prime factorization of some integer F|,
where n — 1 = 2RF with F' > R, must be known. Note that it is computationally
infeasible to generate a large prime by selecting odd integers n of the desired size and
partially factoring n — 1, until an n is selected which can be proved to be prime by
Pocklington’s theorem. A better approach to the generation of primes of a certain
size, say on the order of N, which is also considered in [11], is to construct an integer
F > /N as the product of some known primes and to repeatedly select an integer
R on the order of N/2F until 2RF + 1 can be proved to be prime. However, if the
prime factors of F' are selected from a subset of all primes (e.g. the set of primes
smaller than 10%), then only a very small fraction of all primes of the desired size can
be reached by this construction approach. In order to avoid that the factored part
of p — 1 consists only of small prime factors, one can use this method repeatedly to
construct larger and larger primes, by letting every prime be the factored part F' of
the next prime (see [11]). However, this modification does not increase the diversity
of primes that can be reached by this construction.



The aim of [6] is to use the above construction for generating primes, but never-
theless to obtain primes that are uniformly distributed over a given interval [Ny, Ny
(e.g. [10'910']) centered at N = /N1 Ny, and at the same time to speed up the
generation process. This is achieved by a recursive algorithm: instead of constructing
F as the product of some known primes, the largest prime factor p; of (p—1)/2 is
generated first. The size of py, or, more specifically, the relative size o1 = logy, p1 of
p1, where 0 < g1 < 1, is randomly selected according to the conditional probability
distribution (which will be considered in section 2) of the size of the largest prime
factor of an integer n on the order of N/2, given that 2n + 1 is prime. Then p; is
generated on the order of (N/2)7* by recursive application of the prime generating
procedure.

It will be shown that, with or without the condition that 2n + 1 is prime, the
probability that the largest prime factor of a random integer n is greater than its
square root is approximately log2 = 0.69. In this case, i.e., when p; > v/N, we let
F = p; and generate p by repeatedly and randomly selecting R on the order of N/2p;
until 2Rp; + 1 is proved prime by application of Pocklington’s theorem. It is only in
the remaining 31% of the cases that we need to generate a second prime factor, py, of
(p—1)/2. Its size is selected according to the conditional probability distribution of
the size of the largest prime factor of a number r on the order of N/2p,, given that
p2 < p; and given that 2p;r + 1 is prime. In section 2, we will therefore also consider
the conditional probability distribution of the size of the largest prime factor of n,
given that 2an + 1 is prime for some fixed constant a > 1.

If necessary, the third, fourth, etc., largest prime factors of (p—1)/2 are generated
similarly, until their product F' = [[;>; p; is large enough to guarantee that the
remaining factor R &~ N/2F of (p—1)/2, which is chosen at random, is not greater
than the smallest generated prime factor of F'. This condition must be satisfied to
guarantee that a randomly selected R does not contain a prime factor greater than
the smallest prime in F', a circumstance that would destroy the uniform distribution
established by using the appropriate distributions of the sizes of the prime factors of
F.

When the relative size o7 of the largest prime factor p; of (p—1)/2 is very close to
one, a different type of recursion than mentioned above must be used. With small,
but non-negligible probability (which will be considered in section 2), (p—1)/2 is itself
a prime or a small multiple of a prime, i.e., p; = (p—1)/2 or p; = (p—1)/2k for a
small integer k. In this case the factor R = (p—1)/2F = k is fixed and can therefore
not be randomly selected. Instead, we have to repeatedly generate p; until 2kp; + 1
is prime.

To make a concrete example, assume that a prime p on the order of N = 10'®
(e.g. p € [10'99/2 2-10'%)) has to be generated, and that the random experiment
selecting the size of the largest prime factor p; of (p—1)/2 indicates that (p—1)/2



should be of the form (p—1)/2 = 3p, (i.e., R = 3). Assume further that in the process
of generating p;, the random experiment selecting the size of the largest prime factor
p11 of (p1—1)/2 indicates that (p;—1)/2 should be of the form (p;—1)/2 = 4p;;. Then,
in the process of generating pi1, the size of the largest prime factor of (p;; —1)/2
must be selected according to the conditional probability distribution of the size of
the largest prime factor of an integer n on the order of 10'%°/(2 -6 -8) ~ 10%,
given that 2n + 1, 8(2n + 1) +1 = 16n + 9 and 6(16n + 9) + 1 = 96n + 55 are
primes. In section 3, we discuss the conditional probability distribution of the size
of the largest prime factor of an number n, given that the d integers u; = 2a1n + 1,
us = 2a9uy + 1 = 4ajagn + 2as + 1) + 1, ... | ug = 2aquq_1 + 1 are all primes for a
given list aq,...,aq of d integers.

The described method for generating primes can be turned into a method for
generating random secure RSA-moduli (see [6]). One of the security constraints
provably satisfied by the generated moduli is that the iterated encryption attack,
first mentioned by Simmons and Norris [12], is infeasible. The generated numbers are
claimed to be virtually uniformly distributed over the set of integers that lie in a given
interval, are the product of exactly two primes and satisfy the security constraints.
This claim is justified in Section 3 by considering the probability distribution of the
size of the smaller prime factor of a number randomly selected from the set of integers
in a given interval that are the product of exactly two primes, none of which is smaller
than a given limit.

2. Distribution of the size of the largest prime
factor of numbers n for which 2an+1 is prime

In the following, we consider the probability that an integer n on the order of
N satisfies certain conditions. Since “on the order of N” is not a mathematically
precise condition we will instead use the condition 1 < n < N for stating definitions,
equations and conjectures, although the arguments given as well as the intended ap-
plication (generation of uniformly distributed primes) are often related to the former,
less precise condition. However, for large N, both conditions are virtually equivalent.
It is well-known that the fraction of primes among the integers on the order of N is
well approximated by 1/log N. This fact can also be stated as

N
log N’ (1)
g

m(N) ~

where here and in the sequel logz denotes the natural logarithm of z, 7(/N) denotes
the number of primes less or equal to N and f(N) ~ g(N) stands for limy_,o, f(N)/g(N) =
1.

The arguments that will be used in this section are extensions of those given by
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Koblitz [5] for heuristically justifying the conjecture that the asymptotic behaviour
of the number s(N) of primes p < N for which (p — 1)/2 is also prime is s(N) ~
CyN/(log N)? where Cy ~ 0.66016 is a well defined constant introduced later. Note
that this conjecture is strongly related to the conjecture by Hardy and Littlewood [2]
that the number r(N) of prime pairs less than N satisfies 7(N) ~ 2C,N/(log N)?.
Like this conjecture, our conjectures are heuristically and numerically evident, but no
rigorous proofs can be given. Note that although the Hardy-Littlewood conjecture
and the Koblitz conjecture can experimentally very precisely be verified, even the
questions whether there exist infinitely many prime pairs, and whether there exist
infinitely many primes p for which (p — 1)/2 is also a prime, respectively, are still
open problems.

We first consider the probability distribution of the size of the largest prime factor
of an integer n on the order of N. Let p;(n) denote the largest prime factor of n and
let (N, k) denote the number of positive integers less or equal to N that are of the
form “k times a prime”, i.e.,

v(N,k) = #{n:1<n<N, n = kp with p prime} (2)

where #S denotes the cardinality of the set S. Note that ¥(N,1) = w(N) and that

N N N

v = <(2])~ s - o
vINE) =T[5 klog(N/k) _ k(log N —logk) (3)
Let w(N, @) be the number of integers less or equal to N for which the largest prime
factor is not greater than N¢, i.e.,

w(N,a) = #{n:1<n<N, p;(n) < N%} (4)

The number of integers n less or equal to N and satisfying p;(n) = n/k for a given
(small) k is well approximated by v(N, k). Therefore the number of integers less
or equal to N whose largest prime factor is greater than N®, N — w(N, a), is well
approximated by the sum of the number of integers of the form “k times a prime”
over those k for which k < N'~® and p;(k) < N/k. The first condition on k is to
guarantee that we only count integers with a prime factor greater or equal to N¢ and
the second condition is to prevent that we count certain integers twice: If £ has a
prime factor p greater than N/k, then the corresponding integers have been taken
into account already for a smaller value of £ (on the order of N/p). Hence

w(N,o) ~ N— > v(Nk). (5)
k: 1<k<Nl-«,
p1(k)<N/k

For a > 1/2, pi(k) < N/k for all k with 1 < k < N'~® and hence the second condition
on k can be omitted. For av < 1/2, we can replace the condition p;(n) < N/k by taking
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into account the density w(k,log,(N/k))/k = w(k,log N/logk — 1)/k of numbers k
having no prime factor greater than N/k, and summing over all k£ with 1 < k < N17@.
Therefore we have

1
w(N,a)/N = I—N > w(N,k)
ki 1<k<N1—e,
p1(k)<N/k
1
~ 11— 6
2 k(log N —log k) (6)
k: 1<k<N1-2,
p1(k)<N/k
Nl~e —
~ 1_/ 1 ~w(k,log N/logk — 1) gk )
1 k(log N—logk) k

where in the last step we have approximated the sum by an integral. For the moment
we make the assumption, which can actually be proved (see theorem 1), that for large
N, w(N,«a)/N is virtually independent of N. Thus we can replace both w(N, «)/N
and w(k,a)/k by Fi(a), a function of « only. Using the variable substitution & =
log k/log N, which implies d¢ = dk/(klog N), (7) can be transformed into the integral

equation
1-a [ ((1 —
File) = 1- [ AUZO8) 4 )
0 1-¢
where by convention Fi(a) =1 for & > 1. For o > 1/2 we have
l-a
Fi(a) = 1—/0 % = —logao .

Knuth and Trabb Pardo [4] proved the following theorem which justifies the above
heuristic derivation. The purpose of introducing the heuristic arguments, even though
there exists a rigorous proof for the result, is both to convey intuitive evidence of the
correctness and to prepare for later use of similar arguments, which will allow us
to treat other problems (which are at present beyond theoretical tractability) in a
heuristically evident way.

Theorem 1: Let Fi(«) be defined by (8). Then, for 0 < a < 1,
w(N, @)

lim
N—o00

= Fl(Oé).

Fi(«) is tabulated and depicted in [4]. For instance, the probability that the
largest prime factor of a randomly selected integer is greater than its square root is
log2 = 0.69, and the probability that it is smaller than the fourth root is less than
1%. It can be shown (see [4]) that the functions Fi(«) for t > 2, denoting the fraction
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of integers whose ¢-th largest prime factor is at most N¢, are given by similar integral
equations.

In the following we repeat the above derivation for integers n on the order of N
that satisfy the condition that 2n + 1 is prime, or, more generally, that 2an + 1 is
prime. We introduce the following definitions which will be further generalized in
section 3:

T (N) = #{n:1<n<N, 2an + 1 is prime},
Vo (N, k) = #{n:1<n<N, n = kp with p prime, 2an + 1 is prime} (9)
and wp(N,a) = #{n:1<n<N, pi(n) < N®, 2an + 1 is prime}.

It is a well-known fact that

2a N N q
N) ~ . = . -
el (V) v(2a) log N log N 11 g—1

q|2a

(10)

for every integer a > 1, where ¢(.) denotes Euler’s totient function and where the
product is over all primes ¢ dividing 2a. Here and in the following, ¢ always denotes a
prime, and products are usually taken over all primes ¢ satisfying certain constraints.
An intuitive explanation for (10) is that for every prime ¢ dividing 2a the probability
is 1 that 2an + 1 is not divisible by ¢, whereas the same probability is only (¢ — 1)/q
for random integers. Thus for every prime ¢ dividing 2a, a correction factor ¢/(g—1)
has to be taken into account.

The condition “2n+1 is prime” implies that 2n+1 # 0 (mod q) for all odd primes
q < 2n + 1 and thus that

n# 5 (modg) (11)

i.e., that n Z 1 (mod 3), n # 2 (mod 5), n # 3 (mod 7), etc.. Since n =0 (mod 3)
or n = 2 (mod 3) with equal probability, the probability that a randomly selected n
(with 2n+1 prime) is not divisible by 3 is 1/2, whereas it would be 2/3 if no condition
were placed on n. Similarly, for every odd prime ¢ < 2n + 1 the probabilities that,
with and without condition, n is not divisible by ¢ are (¢ —2)/(¢ — 1) and (¢ —1)/q,
respectively. Taking into account these slight deviations in probability due to the
condition “2n+ 1 is prime” for all odd primes, we obtain that a random integer n on
the order of N, given that “2n + 1 is prime”, is prime with probability
_ _ N ) Plg/n|2n+1 prime] G

P [n prime ‘ 2n+1 prlme] ~ P[n prime| ql;[?’ Plaji] ~ g N’
where z /|y means that y is not divisible by x and where Cy (this notation is in
accordance with [2] and [5]) is a constant defined by

(12)

= q w2Memb g (1—%) ~ 0.660164.  (13)

¢>3, q prime (¢-1)/q ¢>3, q prime q—1)
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Let us now consider the generalized condition that “2an + 1 is prime”, which
implies that 2an 4+ 1 #Z 0 (mod q) for all odd primes ¢ < 2an + 1. For all odd primes
q dividing a this inequality is trivially satisfied. For those ¢ not dividing a we have

1
n —— (mod 14
# — (modg) (14)
and hence the same argument applies as given above for the case a = 1. We have

P [n prime | 2an+1 prime] ~ L 11 (@-2)/la=1) _ Bw()

logN 5om (@—1)/a  logN

(15)

where B,)(1) is defined by

Bo) = 1 =2 _ ¢, LU (16)

g>3: qfa (q B 1)2 ¢>3: qla CI((] - 2)

The notation Bp,(1) is in accordance with two later generalizations. Using (10) and
the fact that limy_ o log(2aN)/log N = 1 we state the following conjecture about
the density of primes p for which 2ap + 1 is also prime.

Conjecture 1: For every a > 1,

. Yq(N,1)log N _ N
1 — B (1 e. AN 1)~ A (1) ————
Nl—l;noo W[a](N) [a]( ), 1€ V[]( ) []( )(IOgN)2
where Apq)(1) is defined by
2aB:, (1 —1
A1) = 2Bal) _ o 121 (17)
(p(za’) ¢>3: qla q— 2

The conditional probability that a number n on the order of N is exactly k£ times
a prime for a given k, given that 2an + 1 is prime, is

P [n = kp with p prime ‘ 2an+1 prime] =
P [k\n | 2an+1 prime] - P [n/k is prime | k|n, 2an+1 prime] . (18)
For all odd primes ¢ dividing k& but not dividing a, inequality (14) implies that

Plg|n|2an+1 prime] ~ 1/(g—1). Without the condition “2an+1 is prime” the same
probability would be 1/¢. Therefore we have

|

g>3: qlk

Plg|n|2an+1 prime] 1
Plgln] k

P [k|n | 2an+1 prime] ~ II Ll :

>3 qfa, gkd ~
(19)



The term P[n/k is prime | k|n, 2an+1 prime] is equal to P[m is prime | 2akm+
1 is prime| where m is on the order of N/k. Using (15), (16), (18) and (19) therefore
yields

. . . By (1
P [n = kp with p prime | 2an+1 prlme] ~ + 1153, ofa, kT log[(%k))

_ & q (¢—1)
FlogV/A) =1 AL a2
Bja) (k)
20
klog(N/k)’ (20)
where B, (k) is defined by
qg—1

By(k) = Bg(l) [I -—- (21)

a>3:qlk, qfa 4~

The above derivation shows that the condition “2an + 1 is prime” changes the prob-
ability that an integer n is prime by a factor By (1), and more generally, the prob-
ability that n is of the form “k times a prime” by a factor By (k). For instance,
for a = 1 we have Bp)(1) = Bpj(2) = Cy = 0.6602, Bp)(3) = 20, = 1.3203,
Byj(4) = Cy = 0.6602, Bpy(5) = 4/3 - Cy = 0.8802, etc., and for a = 3 we
have B[g](l) = B[3](2) = B[g](?)) = B[g](4) = 4/3 . 02 = 0.8802, B[3](5) = 1.1736,
By5(6) = 0.8802, By3)(7) = 1.0563, etc.. The density of primes among the numbers n
for which 2n + 1 is prime is thus only roughly 2/3 of the density of primes. Because
P[2an + 1 prime] ~ 1/log(2aN) we have

B[G]Ui‘) -2a-N
klog(N/k)p(2a)log(2aN)

l/[a] (N,k) ~
which leads to the following generalization of conjecture 1.

Conjecture 2: Foreverya > 1 and k > 1,

. V(N,k)log N By (k) ) N
lim 40 - e, vg(NE) ~ Ag(k)———
Nl—I>noo ’/T[a](N) ]{5 ’ 1€ 1/[]( ’ ) []( )k(IOgN)2 ’
where Ay (k) is defined by
Ak = Ag() I T —ec T 4L
el 2 q-— 2 q>3: qlak q-— 2 '

¢>3: qlk, ¢/fa

In order to estimate the influence of the condition “2an 4 1 is prime” on the
distribution of the size of the largest prime factor of n, we adapt equations (5) to (8)
to take this condition into account:



w[a](Naa)/Nzl_% V[a](N,k)

k: 1<k<N!—e,
p1(k)<N®
~ 1 Z QaB[a](k)
kp(2a)log(N/k)log(2aN)
k:1<k<N1-o
p1(k)<N®
N 2a /Nl_"‘ By (k) w(k,log N/logk — 1) Ik
' o(2a)log(2aN) 1 k(log N—logk) k
2a Nie 1 w(k,log N/logk — 1)
~  Ey| Bk / Rl dk
B (b)) o(2a)log(2aN) i k(log N—logk) k
2a
~ Ey|B(k F . 22
k[ H( )] (p(2a)log(2aN) 1(&) ( )

where E[f(k)] denotes the expectation of f(k) when k is a random positive integer.
We will show that the effect of the terms By (k) in the above derivation averages out
by proving the following theorem.

Theorem 2: For every a > 1, Ex[By(k)] = 1.

This theorem together with (22) suggests that the probability distribution of the
size of the largest prime factor of a random integer n is virtually independent of the
condition “2an 4+ 1 is prime”, which leeds to the following conjecture.

Conjecture 3: Foreverya > 1 and for0 < a <1,
w[a} (N, a) 20,F1 (a) N

©(2a) log N~

= Fl(a), i.e., w[a](N,oz) ~

Proof of Theorem 2: Let g; denote the i-th odd prime and let X; be the the indicator
random variable for the event that ¢k, i.e., X; = 1 if ¢;|k and X; = 0 else. Hence
Px,(0) = (¢ — 1)/¢; and Px,(1) = 1/g;. The sequence Xi, Xo,... is an infinite
sequence of statistically independent binary random variables. Define the function
fa: Nx{0,1} — @ by

q; —

fa(iax) = 9 — 2
1 else,

if t=1and g fa

where N and () denote the positive integers and the rational numbers, respectively.
Then we have

Ey[By(k)] = Bu(1) - By

II u] = Bjg(1) - Ey lﬁfa(iaXi)]

q>3: qlk, qfa q—2 i=1
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= Byg(1)lim Y 1T P (i) fa(i, 2:)

— -
oo[zly ,SE[]E{O l}l =1

= hmH > Px,(x)fali,z)

1200321 s {01}

where the last step follows from the fact that product and summation can be inter-
changed. Using

; — 1 1
2 Pxia)falisz) = ¢ —1 qi (lz'—lqz (¢i — 1)

z€{0,1} + = = if ¢; Ja
gi 6¢—2 q(6—2)

as well as equation (16) we obtain

B (¢—-1)?* _
Ey[Biq (k)] = B[a](l)q>qu a(q—2)

3. More conditions on the numbers n

In this section, we treat the same problems as in the previous section, but with
more conditions placed on the integers n. For n randomly selected from the set of
integers “on the order of N” that satisfy these conditions, the probability that n
is of the form “k times a prime” and the probability distribution of the size of the
largest prime factor of n are discussed. The conditions on n, which are motivated
by the analysis of the prime generating procedure of [6], are that for given integers
ai,as, . ..aq, the numbers

Uy = 2a1n+ 1,

Uy = 2a9ui + 1 =4ajasn + 2a, + 1,

uz = 2asus + 1 = 8ajasasn + 4asas + 2a3 + 1,
ug = 2aquq-1+1,

all are primes. More formally, we say that n satisfies the condition Q,(n) for a given
list @ = [aq,...,aq] of positive integers if and only if the d integers uq,...,uq are
primes:

Qu(n) < w(a) is prime for 1 <t < d, (23)

where u;(a) is defined recursively by ug(a) = n and

ut(g) = 2atut 1( ) +1 for 1 S t S d. (24)
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In the following we use the notation
t
ur(a) = ri(a) n+ s¢(a), where r(a) =2"]]a (25)
i=1

for 1 <t < d, and where s,(a) is defined recursively by s;(a) = 1 and

sila) = 2a8i-1(a) +1 for2 <t <d. (26)

The number u;(a) is prime if and only if
w(a) = ri(@) n+si(a) # 0 (modg) (27)

for all odd primes ¢ smaller that u;(a). If for some prime ¢ and some ¢ we have
ri(a) = s¢(a) = 0 (mod q) or, equivalently, if (r;(a), s;(a)) # 1 for some ¢, then there
exists no integer n satisfying Qq(n). A list @ = [ay, - . ., ag] for which Q,(n) is satisfied
by some positive integer n is called admissible, otherwise it is called non-admissible.
Examples of non-admissible lists are [3,1], [3,2,2] and [5,2]. In the sequel we only
consider lists a = [a, ..., aq] for which

(r(a),se(a)) = 1 for1 <t <d. (28)
Let d,(a) denote the greatest integer ¢ < d such that ¢ does not divide a;, i.e.,
dy(a) = max{i:0<i<d, qfa;}. (29)

The arguments given in the following are valid for all odd primes ¢ < wui(a). For
t > dy(a), ie., if gla;, equation (27) is trivially satisfied if (28) is satisfied. For
t < d,(a), which guarantees that r:(a) #Z 0 (mod ¢), the condition Q,(n) implies that

St (Q)
Tt (Q)

(mod q). (30)

and hence that the remainder R,(n) of n modulo ¢ satisfies

R,(n) & Syla) = {—St@) (modq): 1<t < dq(Q)}. (31)
Tt(Q)

Another reason for a list ¢ to be non-admissible is the existence of an odd prime gq

such that #S,(a) = g, i.e., such that all remainders modulo ¢ of n are ruled out by the

conditions (30). Examples of such lists g are [1,2,2], [2,1,2], [2,2,2] and [2, 3, 3, 3, 3].

Let us now consider for a given a the conditional probability that n is prime, given
Q.(n). In the following we only consider admissible lists a. For every odd prime g
we can distinguish between two cases: 0 € S,(a) and 0 & S;(a). The probability that
n is not divisible by g, given Q4 (n), is 1 or (¢—#5S,(a)—1)/(¢—#S,(a)) depending

12



on 0 € Sy(a) or 0 &€ S,(a), respectively, compared to (¢ — 1)/¢q when no condition is
placed on n. Therefore we have

P[n prime ‘ Qq(n)] ~ Pn prime] - H P[q)(n\Qg(n)] N B,(1)

B=pum ™ logn &

where B, (1) is defined (in accordance with the generalization B,(k) considered below)

B,(1) = H Q(q_#sq<g)_1) H L (33)

>3 025y(@) (4~ D@=#5(@)) 455,085, 7~ 1

The natural generalizations of definitions (9) are

T (N) = #{n:1<n<N, nis prime, Q,(n)},
vo(N, k) = #{n:1<n<N, n=kp with p prime, Q,(n)} (34)
and wy(N,a) = #{n:1<n<N, pi(n) < N%, Qu(n)},

and the corresponding generalization of conjecture 1 is

Conjecture 4: For every a = [aq, ..., aq],

ve(N,1)log N _ B,(1).

N—oo WQ(N) =

Bateman and Horn [1] have considered the conditional probability that a random
integer is prime, given that it simultaneously satisfies a set of polynomial equations.
Conjectures 1 and 4 can be regarded as a special case of their conjecture, but the
other conjectures are generalizations of those in [1].

Let us now consider for given k > 1 and a = [ay, . . ., a4] the conditional probability
that n = kp with p prime, given Q,(n):

P [n = kp with p prime | Qg(n)] =P [k|n | Qg(n)] - P [n/k is prime | k[n, Qg(n)] :

(35)
Conditions (31) imply that for all odd primes ¢ dividing k, Plg|n | Qa(n)] = 0 and
Plg|n|Qa(n)] = 1/(q—#3S,(a)) when 0 € S,(a) and 0 & Sy(a), respectively. Therefore
we have

Plg|n | Qa(n)]

Plkln|Qa(n)] =~ Plgln]

¢>3: qlk

F v | mES@ #‘fgq o f0¢ S,(a) [ - (36)

%
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The term P[n/k is prime | k|n,Qqu(n)] is equal to P[m is prime | Qg.q(m)], where
k xa = |kay,ay,...,aq] and where m is on the order of N/k. Using (32), (35) and
(36) therefore yields

P[n = kp with p prime ‘ Q.(n)] ~ %%)/k) , (37)
where . S
0 it 0 a
Bb) = I { L e } Bal1) (59
e>3:qk | q—#S,(a) R

It is not difficult to verify that when g|k, then #S,(kxa) = 0. Moreover, q|k together
with 0 € S;(a) implies that k * @ is non-admissible. Similarly, when g¢fk, then we have
0€ S,(a) <= 0¢€ Sy(kx*a)and #S5,(a) = #S,(k xa). Thus

1 if 0 € 5,(a)
0 if 0 € S,(a) —1 "
Bk*g(l) = H { 1 if 0 leq(Q) } H q(q_#sq(g)_l)

q>3: qlk ¢>3: qfk (q — 1)<q—#Sq(Q)) if 0 ¢ Sq<Q)
(39)
Combining (38) and (39) yields
Bt { 0 if 0 € S,(a) 0 qi% if 0 € S,(a)
o(k) = — % if0¢S,a) 9(q—#S4(a)—1) .
923: qlk q_#S‘I(Q) 9>3: q/k (q _ 1)((]_#5(1(@)) if 0 Q SQ(Q)
(40)

Conjectures 2 and 4 generalize to the following conjecture.

Conjecture 5: For every a = [a4, ..., aq],

n(N.R)logN _ By(k)
N—=o0 Ta(N) k

It is possible to generalize the second half of conjecture 2 to obtain

N

Vvo(N, k) ~ Ag(/f)W

where an expression similar to that for Apg(k), but much more complicated, can be
given for A,(k). Since the aim of this paper is to consider only conditional probability
distributions, the expressions for A,(k) are not derived here.

Although the expression (40) for B, (k) is rather complicated, the following theorem
can be proved (see Appendix for a proof). The subsequent conjecture, which is based
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on theorem 3 and can be obtained by a derivation similar to that of (22), is the
straight-forward generalization of conjecture 3.

Theorem 3: For every a = [ay, ..., aq], Ek[Bg(k)] = L

Conjecture 6: For every a = [a1,...,aq] and for 0 < a <1,
. wa(Na a) .
1\}1—I>noo 7o(IN) Fifa)

4. The distribution of the size of the smaller RSA-
prime

The method for generating primes is in [6] also used to devise a method for gen-
erating random RSA-moduli, i.e., for randomly selecting an integer n = pq (with
virtually uniform distribution) from the set of integers in a given interval that are
the product of exactly two primes, are compatible with a predefined encryption ex-
ponent, and that satisfy certain security requirements. One of these requirements is
that neither of the prime factors must be too small. In this section, we consider the
density of integers on the order of NV that are the product of exactly 2 primes, neither
of which is smaller than N” for a given 7.

Let p(n) denote the number of prime factors (counting multiple occurrences) of n,
p(n) the smallest prime factor of n, and let

p(N) = #{n: 1<n<N, u(n)
and 7(N,y) = #{n: 1<n<N, u(n)

1} (41)
2, p(n) > N7} (42)

Hence po(N) = 1(N,0) denotes the number of integers less or equal to N that are
the product of exactly two primes. We have
v(N, k) 1
N N = I~ S —
(N, 7)/ 2 N 2 Hlog/E)

k: NY<k<N'/2, k: NY<k<N/2,

k prime k prime
N1/ 1 1
/ — dk
~  klog(N/k) logk

1 /2 d¢ _ log(1—7) —logy
logN Jy £(1-¢€) log N

Q

(43)

where we have approximated the sum by an integral and taken into account the
condition “k prime” by introducing the density 1/logk of primes on the order of k.
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The probability distribution of the size of the smaller prime of an RSA-modulus on
the order of N, given that none of the prime factors is smaller than N7, is given by
_ _ T2 (N: CV)
P |p(n) < N* | un)=2,p(n)>N" = 11— —F———=
[5(n) | u(n) =2, p(n) ] (V)
log(1 — a) — log «
log(1 — ) —logvy
For v > 0.4, the relative size of the smaller prime factor of the RSA-modulus is
virtually uniformly distributed over the interval [y,1/2]. Based on (44) we state the
following conjecture.

(44)

Conjecture 7: For0 <y <1,

TQ(Na 7) ~

log(1 — ) —1 )
logN( og(1 —7) —logv)

Since po(N) = #{n: 1<n <N, u(n) =2, p(n) > 2} = n(N,log2/log N), a
special case of conjecture 7 is the conjecture that ps(IN) ~ N loglog N/log N. In fact,
this conjecture, and also its generalization from 2 to [ prime factors, can be proved
(see [3], Theorem 437).

N(loglog N)i1
(I —1)!log N

Theorem 4: Forl>2, p(N) ~

5. Conclusions

The claim that the procedure for generating RSA-moduli described in [6] selects
virtually randomly from the set of all RSA-moduli of a given size satisfying certain
security constraints has been justified by heuristic arguments. Some heuristically and
numerically evident number-theoretic conjectures have been stated. Their evidence
is supported by the fact that some special cases can be proved.

Appendix: Proof of Theorem 3

This proof is similar to that of Theorem 2. Equation (40) can be rewritten as

q )
0 if gk —#S.(@ Lk
Bu(k) = ]I {L ifq)(k} 11 Q(qq—#SqZé))—l)

g>3:0¢S,(a) | g — 1 IS (1) (q—#5,(a))
q paly

if q [k

= H g&@ﬂ XZ)

i=1
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where the random variables X7, X,,... are defined in the proof of theorem 2 and
where

' 0 if 0 € Sy, (a) and z =0

P if 0 € S, (a) and & = 1

9a(i,2) = B if 0 ¢ Sy,(a) and z =0
qz_#Si(Q) ¢ ()

4i(ai — #5, (a) — 1)
| (@ - D@ - #5,(@)

if 0 ¢ S (a) and =z = 1.

Hence
BB = B |T0aX)

- i=1

!
- llggo Z H Px; (xi)gg(i, ;)
[wl ,,,,, z)e{0,1} i=1

= hmHZPX )9a (i, )

1=12€{0,1}

where the last step follows from the fact that product and summation can be inter-
changed. It is easy to verify that

Z PXi(x)gQ(iax) = 1,

z€{0,1}

independently of whether 0 € S, (a) or 0 ¢ S,,(a). This completes the proof. O
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