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Abstract—In this paper we provide a generalization of weak
oblivious transfer through the constructive cryptography frame-
work. This generalization requires the global order of the inputs
and outputs from and to two parties called Alice and Bob to
be completely defined, a subtlety which has been overlooked by
previous work on the subject. We provide evidence that the order
of inputs and outputs in weak oblivious transfer matters. In
particular, it may influence the kind and strength of symmetry
results which can be obtained about such resources.

I. INTRODUCTION

A. Setting and previous work

1-2 Oblivious Transfer (1-2-OT) is a cryptographic primitive
which receives two secret bits from Alice, one selection bit
from Bob, and outputs the selected bit to Bob. It is guaranteed
that Bob does not learn the secret bit he did not select and
that Alice does not learn Bob’s selection bit. This resource
is fundamental in cryptography in the sense that one can
base many important primitives on 1-2-OT. This includes, for
example, several resources in secure multi-party computation.

It is known that 1-2-OT cannot be constructed only from
a noiseless channel. As a result there have been many efforts
to construct 1-2-OT from other kinds of weaker resources.
For example, 1-2-OT can be constructed from all-or-nothing
oblivious transfer (OT) (see [1]) and from several types
of noisy channels (see [2], [5] and [6]). The analysis of
the intermediate steps in such constructions has led to the
definition and study of weaker notions of 1-2-OT (so-called
weak oblivious transfer), where additional information may
be leaked to Alice and Bob. Two important variants of weak
oblivious transfer were proposed and studied in [5], [6], and
[9].

The question of whether 1-2-OT can be reversed (i.e.
Alice takes the role of Bob, and vice-versa) was first stated,
motivated and answered in [8], where it was proved that one
can obtain reversed 1-2-OT from several instances of 1-2-
OT and a clear channel. Later, it was proved in [7] that one
instance of 1-2-OT and a clear channel suffice to reverse 1-2-
OT.

The constructive cryptography framework, where crypto-
graphic protocols are seen as constructions of resources from
other resources, was first developed in [3] and in [4]. The
definition of what constitutes a valid construction depends on

which parties can be dishonest and on which kind of security
we are aiming to achieve.

B. Contributions

In Section III we propose a generalization of weak oblivious
transfer (called FOT) through the constructive cryptography
framework. For ease of presentation, we focus on a subclass
of FOT which is still quite general. For example, it captures
(p, q, ε)-WOT (as defined in [5] and [6]) as a specification,
i.e. a set of resources. We also show that it captures Crépeau’s
reduction of 1-2-OT to OT presented in [1] (when it is seen
in a non-asymptotic manner) as a different instantiation from
(p, q, ε)-WOT.

In Section IV we discuss symmetry statements for our
generalization of weak oblivious transfer. While [6] and [9]
also propose generalized versions of weak oblivious transfer,
these are not adequate for reasoning about more precise
symmetry statements. In particular, previous definitions do not
pay much attention to the order of the inputs and outputs to and
from Alice and Bob. We formalize symmetry for weak obliv-
ious transfer as a constructive statement and provide partial
symmetry results for some instantiations of our generalization
of weak oblivious transfer, including a symmetry result which
requires no clear channel. This latter result is based on a
simple idea which also yields an amplification method for
weak oblivious transfer in a previously unexplored setting.
Furthermore, we provide evidence that the order of inputs and
outputs influences the kind of symmetry results we are able
to prove about an instantiation of weak oblivious transfer.

II. PRELIMINARIES

A. Notation

We denote a random variable by an upper-case letter
X , its probability function by PX and an element of the
domain of the random variable X by a lower-case x. We
also denote that r was uniformly sampled from a set X by
r ∈R X . Also, probability distributions are denoted by lower-
case Greek letters such as ρ. Given n independent random
variables U1, . . . , Un uniformly distributed over {0, 1}, we
define F (n, k) = Pr [

∑n
i=1 Ui ≥ k].
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B. Constructive Cryptography

In this paper we use the constructive cryptography frame-
work (see [3] and [4]) to formulate our results. This framework
deals with systems which, at the highest level of abstraction,
are objects with interfaces. Systems can be composed by
connecting some of their interfaces.

Systems can be separated into three types: converters, dis-
tinguishers and resources. Resources are denoted by boldfaced
upper-case letters such as R. In this paper we consider only
resources with two interfaces: a left interface, which we call
Alice’s interface, and a right interface, which we call Bob’s
interface. We can also use two such resources R and S in
parallel, which results in a resource R||S, which again has
two interfaces. Each of those two interfaces gives access to
an interface of R and an interface of S. We define by Rk

the resource which consists of the parallel composition of k
copies of resource R. We study situations where one of Alice
and Bob is dishonest, but not both. A specification is a set of
resources.

Converters are systems which have an inner interface and an
outer interface. They are denoted by lower-case Greek letters
such as α, β and π. We denote the set of all converters by Σ. A
converter α can be connected to a resource R by connecting
its inner interface to either the left or the right interface of
R. If α is connected to the left interface of R we denote
the resulting (2-interface) system by αR, where the new left
interface is the outer interface of α and the new right interface
is still the right interface of R. If α is connected to the right
interface of R, we denote the resulting system by Rα.

Distinguishers are systems which connect to all interfaces
of a resource R and output a bit B at a separate interface. The
interaction between D and R specifies a random experiment
and the probability that D outputs 1 when interacting with R
is denoted by PDR[B = 1]. The distinguishing advantage of
D in distinguishing between resources R and S is

∆D(R,S) :=
∣∣PDR[B = 1]− PDS[B = 1]

∣∣ .
We denote the set of all distinguishers by D and define

∆D(R,S) := sup
D∈D

∆D(R,S).

Note that ∆D is a pseudo-metric. We denote the statement
∆D(R,S) = 0 by R ≡ S. It is known that deterministic
distinguishers are optimal. Furthermore, for a resource S we
define the specification Sd as

Sd := {R : ∆D(R,S) ≤ d}.

Definition 1. A resource S is constructed from resource R,
denoted R → S, if there exist converters π1, π2, σ1, σ2 ∈ Σ
such that

π1Rπ2 ≡ S

Rπ2 ≡ σ1S
π1R ≡ Sσ2.

(1)

The converters σ1 and σ2 may also be called simulators.

In this paper we make heavy use of two resources. The
first is a perfect communication channel between Alice and
Bob that we denote by C. The second is a resource for all
or nothing oblivious transfer with probability p, which we
denote by p-OT. When p = 1/2 we denote the corresponding
resource by OT for convenience. In p-OT, Alice inputs a
bit B at the left interface and Bob receives B′ ∈ {0, 1, ?}
from the right interface. Furthermore, PB′ [B

′ = B] = p and
PB′ [B

′ =?] = 1− p.

III. GENERALIZING WEAK OBLIVIOUS TRANSFER –
CONSTRUCTIVELY

In this section we describe a resource we name FOT
(for faulty oblivious transfer) which is a generalized form of
weak oblivious transfer. This resource allows to capture, as
special cases, existing notions of weak oblivious transfer (see
[5], [6] and [9]). We focus on one particular instantiation of
FOT, which we denote by ρ-FOT. For example, ρ-FOT
already captures (p, q, ε)-WOT as defined in [5] and [6].
Furthermore, we show that Crépeau’s protocol from [1] is
captured by a different instantiation of ρ-FOT. We highlight
the fact that each instantiation of FOT must specify the
global chronological order of inputs and outputs. This subtlety
becomes relevant, for example, when studying symmetry in
Section IV.

Suppose that Alice has secret bits X0 and X1 and Bob has
a selection bit S. Furthermore, consider random variables D
and E over {0, 1} and a random variable C over {0, 1, 2}
distributed according to a joint probability distribution ρ :=
PCDE . Note that we do not assume anything regarding the
correlation between C, D and E.

Consider the following set of actions of ρ-FOT.
1) Bob receives C.
2) Bob inputs his selection bit S.
3) Alice receives V , where

V =

{
? if D = 0

S if D = 1
(2)

4) Alice inputs X0 and X1.
5) Bob receives Y , where

Y =


? if C = 0

XS if C = 1

(XS , X1−S) if C = 2

(3)

where XS = E ⊕XS .
Intuitively, D models Alice’s ability to learn Bob’s selection

bit, C models Bob’s ability to learn one, both or none of
Alice’s secret bits, and E models a possible transmission
error. We can then define instantiations of ρ-FOT by simply
providing a valid order of the above actions and the joint
probability distribution of C, D, and E. For our set of actions
it suffices to fix the relative order of actions 1 and 2 and of
actions 3 and 4 to define a full order of the actions. For Alice’s
interface, ↑ means “3 before 4” and, for Bob’s interface, “1

2016 IEEE International Symposium on Information Theory

791



ρ-FOT

C

S

V

X0, X1

Y

Fig. 1. A graphical representation of the ρ-FOT↑↑ resource. Note the order
imposed on the inputs and outputs. The arrows are ordered from top to bottom
by a chronological order which applies to both interfaces.

before 2”. The reversed arrow ↓ means the opposite statement
for each interface. We can fix an order by specifying the arrows
for Alice and Bob. Given O ∈ {↑↑, ↑↓, ↓↑, ↓↓} and a joint
probability distribution ρ we define the resource ρ-FOTO

as ρ-FOT with the order induced by O and where C, D
and E have joint probability distribution ρ. If O =↑↑ we
may write ρ-FOT for convenience. Note that this yields an
avenue for defining notions of FOT which are more general
or with a completely different set of actions in a natural way.
Nevertheless, we stick to ρ-FOTO for ease of presentation
because it is already quite general and because it serves the
purposes of the paper.

One can show that Crépeau’s protocol for reducing 1-2-OT
to OT (see [1] for a detailed explanation of the protocol) is
captured by ρ-FOT.

Most of the results in this paper do not depend on the
correlation between C, D and E but only on their marginal
distributions. Thus we can define useful specifications for
ρ-FOT in a very natural way.

Definition 2. Given a tuple (α, β, γ, δ) with α, β, γ ∈ [0, 1],
δ ∈ [0, 1/2] and β + γ ≤ 1 and an order O, we define the
specification (α, β, γ, δ)-FOTO as the set of all resources
ρ-FOTO such that PD(1) = α, PE(1) = δ and

PC(c) =


γ if c = 0

1− β − γ if c = 1

β if c = 2

(4)

In this paper we mainly work with specifications
(α, β, γ, δ)-FOT↑↑, which we denote by (α, β, γ, δ)-FOT for
convenience. Note that when δ = 0 and at least one of α, β, γ
is 0 or 1 then the specification (α, β, γ, δ)-FOT contains only
one resource. In this case we may identify the specification and
the resource contained in the specification.

It is easy to see now that (p, q, ε)-WOT can be seen as
the union of all specifications (α, β, 0, δ)-FOT↓↓ such that
α ≤ p, β ≤ q and δ ≤ ε.

If we assume that we have access to a limited number k
of OT calls, then Crépeau’s protocol allows us to obtain a
particular instance of ρ-FOT.

Theorem 1.

OTk||C→ (0, β, γ, 0)-FOT.

(p, q, ε)-WOT

S

X0, X1

V

C

Y

Fig. 2. A graphical representation of an element of (p, q, ε)-WOT. Note
that this is an instance of ρ-FOT↓↓ with PC(0) = 0.

where β = F (k, 3k/4) and γ = F (k, 5k/8).

Proof Sketch: The high-level intuition for this result
comes from the fact that Bob learns how many secret bits
he will receive (but not their values) when he receives bits
c1, . . . , ck from Alice through the k OT resources. For
example, if |{i : ci 6=?}| ≥ 3k/4 then Bob can learn both bits.
Bob only learns the values of the secret bits he is supposed
to receive after inputting his selection bit. On the other hand,
Alice learns no information about Bob’s selection bit. It is
then easy to see that (0, β, γ, 0)-FOT is securely constructed
with

β = Pr[|{i : c′i 6=?}| ≥ 3k/4] = F (k, 3k/4)

and
γ = Pr[|{i : c′i 6=?}| < 3k/8] = F (k, 5k/8).

IV. SYMMETRY

The question of whether oblivious transfer can be reversed
is well motivated (for example by differences in computational
power between Alice and Bob) and has received some atten-
tion in the past. It was first stated and answered by Crépeau
and Sántha in [8]. Later, Wolf and Wullschleger showed that
one can obtain reversed 1-2-OT from a single instance of
1-2-OT and a clear channel in [7]. It is then natural to ask
whether one can reverse weak oblivious transfer from a single
instance of weak oblivious transfer and a clear channel, and
what kind of properties influence symmetry results.

In this section we present partial symmetry results for
certain subclasses of FOT. It is clear that the subtleties
outlined earlier show up here in a fundamental way. In
fact, when reversing a certain resource we may want some
particular chronological order of inputs and outputs to hold
for the reversed resource (for example, we may want the
reversed resource to keep the same order as the original
resource). Our general FOT resource and the constructive
cryptography framework allow us to reason about these fine-
grained symmetry questions. We refer to the reversed versions
of ρ-FOTO and OT as ρ-TOFO and TO, respectively.
Thus, ρ-TOFO and TO are the same as ρ-FOTO and
OT but with their left and right interfaces swapped. We
can then define specifications (α, β, γ, δ)-TOFO in the same
way as for FOT. Therefore, precise symmetry statements
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for ρ-FOT can be seen as constructive statements from
(α, β, γ, δ)-FOTO to (α′, β′, γ′, δ′)-TOFO′ , where O and
O′ need not coincide.

A. Symmetry without a clear channel and an application to
weak oblivious transfer amplification

In this subsection we show that we can obtain symmetry
results with a single instance of ρ-FOT↓↓ and without using
a clear channel.

Lemma 2. For any p ∈ (0, 1) we have

p-TO→ (p, 0, 1, 0)-FOT↓↓

and
ρ-FOT↓↓ → p-TO,

whenever C, D, and E are independent and PD(1) = p.

Proof Sketch: To prove the first statement, note that a
converter for Bob can always output C = 0 and Y =? and the
converter for Alice can disregard all input at the outer interface
and simply output V . To prove the second statement, note that
a converter for Bob can input his secret bit as a selection bit.
Then a converter for Alice can input random secret bits. In
both cases the simulators are straightforward.

We also have the following lemma.

Lemma 3. For any ρ-FOT↓↓ ∈ (α, β, γ, 0)-FOT and
independent random variables C and D we have

ρ-FOT↓↓ → (1− γ)-OT.

Proof Sketch: We can define a converter for Alice which
sets X0 = X1 = b, where b is Alice’s secret bit. The converter
for Bob can input a random selection bit S and output ? if
Y =? or XS otherwise. The corresponding simulators are
straightforward.

As a corollary of Lemma 2 and Lemma 3 we obtain a partial
symmetry result which does not require a clear channel.

Theorem 4. For any ρ-FOT↓↓ ∈ (α, β, γ, 0)-FOT and
independent random variables C and D we have

ρ-FOT↓↓ → (1− γ, 0, 1, 0)-TOF↓↓.

While this result is to be seen as an example of a difference
between weak and regular oblivious transfer, the simple ideas
used to prove it can be applied to make progress in other
questions. A natural question which can be posed is the
following: From which instances of weak oblivious transfer
can we obtain unconditionally secure 1-2-OT? This has been
studied extensively in [5] and [9]. In particular, the following
impossibility theorem is proved in [5].

Theorem 5 (Impossibility Theorem from [5]). Whenever p+
q + 2ε ≥ 1 there is R ∈ (p, q, ε)-WOT such that for some
d > 0 we have Rk 6→ 1-2-OTd for every integer k.

In [5] and [9] the authors focus on parameters which satisfy
p+ q+ 2ε < 1, but one can ask the following: What happens
when we go beyond the impossibility bound? Obviously,

reduction methods in this case must exploit something other
than the parameters (p, q, ε). We claim that the ideas from
Lemma 2 provide a first stepping stone towards understanding
weak oblivious transfer amplification beyond this bound. In
fact, we have the following result.

Theorem 6. For any (p, q, ε) with p > 0, an integer s
and R ∈ (p, q, ε)-WOT with C, D, and E indepen-
dent and PD(1) ∈ (0, 1) we have Rk → 1-2-OT2−s for
k = O(poly(s)).

Proof Sketch: Note that if p′ := PD(1) then we can
construct p′-TO from R by Lemma 2. We can then apply
Crépeau’s construction from [1] to construct S′ ∈ 1-2-TO2−s

using O(poly(s)) many copies of p′-TO. Using the protocol
from [7] for reversing 1-2-OT (described in the next subsec-
tion) we construct S ∈ 1-2-OT2−s from S′.

This result can also be easily generalized to the case where
not all instances of (p, q, ε)-WOT we are using have the same
p′ but are guaranteed to have p′ ∈ [a, b] ⊂ (0, 1).

Some open questions naturally arise: can we extend this
reduction method so that we can reduce 1-2-OT to instances
of (p, q, ε)-WOT where C, D and E are almost independent
in some sense? Can we get a similar result when p = 0?

B. Symmetry with a clear channel

Wolf and Wullschleger [7] presented a protocol for reversing
1-2-OT, based on one instance of 1-2-OT and a clear
channel, which is perfectly secure and optimal (as it needs
only one bit of communication between Alice and Bob). We
describe it below. Alice has a selection bit S and Bob has
secret bits X0 and X1.

1) Alice generates r ∈R {0, 1} and inputs (r, r ⊕ S) to
1-2-OT.

2) Bob inputs X0 ⊕ X1 as his selection bit and receives
output a. Then Bob computes m = X0⊕ a and sends m
to Alice through a clear channel.

3) Alice receives m and computes XS = m⊕ r.
We make use of their protocol in the following theorem.

Theorem 7. For any p ∈ [0, 1],

(p, 0, 0, 0)-FOT||C→ (0, p, 0, 0)-TOF.

Furthermore, for any q ∈ [0, 1],

(0, q, 0, 0)-FOT||C→ (q, 0, 0, 0)-TOF.

Proof: The first claim follows from a direct application
of Wolf and Wullschleger’s protocol.

In order to prove the second claim we slightly adapt Wolf
and Wullschleger’s protocol. The main observation behind our
adaptation of the protocol is the fact that when Alice learns
that C = 2 she can afterwards input a random selection bit,
as she will receive both secret bits regardless. This means that
we can define a converter π2 that is able to correctly compute
V before asking for Bob’s secret bits.

Defining a converter π1 and a simulator σ1 for Alice is
straightforward as it is again a direct application of Wolf and
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1: CONVERTER π2
2: receive C at inner interface
3: if C = 1 then
4: output V =? at outer interface
5: on input (X0, X1) at outer interface, input X0 ⊕ X1

at inner interface
6: receive a ∈ {r, r ⊕ s} at inner interface
7: else
8: generate r ∈R {0, 1}
9: input r at inner interface

10: on output (b0, b1) at inner interface compute s = b0⊕
b1

11: output V = s at outer interface
12: on input (X0, X1) at outer interface, set a = bX0⊕X1

13: end if
14: compute m = X0 ⊕ a
15: input m at the clear channel at inner interface

Fig. 3. Converter π2 for Theorem 7.

1: SIMULATOR σ2
2: receive V at inner interface
3: if V 6=? then
4: output C = 2 at outer interface
5: else
6: output C = 1 at outer interface
7: end if
8: receive a at outer interface
9: generate r ∈R {0, 1}

10: if C = 1 then
11: output r at outer interface
12: else
13: output (r, r ⊕ V ) at outer interface
14: end if
15: receive m at outer interface
16: if C = 1 then
17: compute X0 = m⊕ r and X1 = X0 ⊕ a
18: input (X0, X1) at inner interface
19: else
20: compute XV = m⊕ r
21: generate r′ ∈R {0, 1}
22: input (r′, XV ) at inner interface
23: end if

Fig. 4. Simulator σ2 for Theorem 7.

Wullschleger’s protocol. We show how to define a converter
π2 and a simulator σ2 for Bob only. Refer to Figure 3 for π2
and to Figure 4 for σ2.

For defining σ2, note that if C = 1 then Bob should choose
a = X0 ⊕X1 and thus σ2 can recover X0 and X1 at a later
stage. Furthermore, if C = 2 then Bob can choose a random
a. Nevertheless, it should be the case that m⊕ r = bS , where
S is Alice’s selection bit. This is so because if X0 ⊕X1 = 0
then m = X0 ⊕ r and then m⊕ r = X0 = XS . Moreover, if
X0⊕X1 = 1 then m = X0⊕r⊕S and so m⊕r = X0⊕S =

bS . Since we know S in this case we know how to input the
secret bits into TOF. Thus σ2 is a valid simulator.

C. Other orders and instantiations

Although we can easily obtain partial symmetry results
for ρ-FOT based on Wolf and Wullschleger’s protocol, the
reality is very different when we consider other instantiations
of FOT. In fact, if we consider ρ-FOT↓↓ then Wolf and
Wullschleger’s protocol fails. This failure is due to the fact that
Alice and Bob only learn leaked information after inputting
their secret bits and selection bit, respectively. Recall that in
ρ-FOT Alice learns leaked information before inputting her
secret bits. When we try to apply Wolf and Wullschleger’s
protocol to ρ-FOT↓↓ and we attempt to devise a simulator
for Bob, we run into some problems. We receive a bit b from
Bob, which should satisfy b = X0 ⊕ X1 if Bob is honest.
Furthermore, we should simulate outputting both secret bits
from Alice (r and r⊕S) with probability p. The problem we
are faced with now is that to simulate outputting r and r⊕ S
we must know S, but we first need to input X0 and X1 to the
reversed FOT to obtain S with probability p.

This property seems to be a fundamental barrier to proving
symmetry results for a large class of FOT instantiations that
are similar to ρ-FOT↓↓ (in the sense that the left interface
only leaks information after receiving the secret bits). This is
not an issue when dealing with ρ-FOT because we learn S
before inputting X0 and X1. Thus, the order of inputs and
outputs in weak oblivious transfer seems to have an important
effect on the kind of properties we can prove about such
resources.
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