
Hierarchy of Three-Party Consistency Specifications
Julian Loss, Ueli Maurer, Daniel Tschudi

Department of Computer Science, ETH Zurich, Switzerland
jloss@student.ethz.ch,{maurer, tschudid}@inf.ethz.ch

Abstract—In the theory of distributed systems and in cryptog-
raphy one considers a set of n parties which wish to securely
perform a certain computation, even if some of the parties are
dishonest. Broadcast, one of the most fundamental and widely
used such primitives, allows one (possibly cheating) party to
distribute a value m consistently to the other parties, in a context
where only bilateral (authenticated) channels between parties are
available. A well-known result [LSP82] states that this is possible
if and only if strictly less than a third of the parties are dishonest.

Broadcast guarantees a very strong form of consistency. This
paper investigates generalizations of the broadcast setting in
two directions: weaker forms of consistency guarantees are
considered, and other resources than merely bilateral channels
are assumed to be available. The ultimate goal of this line of
work is to arrive at a complete classification of consistency
specifications [Mau04]. As a concrete result in this direction we
present a complete classification of three-party specifications with
a binary input and binary outputs.

I. INTRODUCTION

A Secure Multi-Party Computation (MPC) protocol allows
a set of parties to securely perform an arbitrary computation
on their inputs even when a subset of the parties is dishonest.
Such a protocol can thus be seen as the emulation of a trusted
party which performs the desired computation. One of the
most fundamental primitives in this setting is broadcast. It
allows a sender to distribute his message m such that all honest
parties receive the same value m′ (consistency) where m′ = m
for an honest sender (validity). It is well-known [LSP82] that
broadcast can only be constructed from authenticated channels
if less than a third of all parties are dishonest. This raises
questions such as “What is required to construct broadcast if
more parties are dishonest?” and “What are the consistency
guarantees one can achieve with authenticated channels?”. A
thorough answer can be given through a classification of so
called consistency specifications.

A. Summary of Known Results

Broadcast was first introduced by Pease, Shostak, and
Lamport [LSP82]. They showed that one cannot construct
broadcast from a network of pairwise authenticated channels
if a third or more of the parties are dishonest. The feasibility
of broadcast given authenticated channels has been intensively
studied (see e.g. [PW96],[BGP89]) and protocols with optimal
resilience and complexity have been proposed. The work in
[FM00] considers the problem of constructing global broadcast
given broadcast among any three parties.

An essential characteristic of broadcast are the consistency
guarantees that it provides on the output of honest parties. To

model general consistency guarantees, Maurer [Mau04] pro-
posed the notion of consistency specifications. A consistency
specification defines for every set H of honest parties and
every possible input of those parties, a consistency guarantee
on their output. Protocols allow to construct (strong) consis-
tency specifications from a given set of (weak) consistency
specifications. The notion of consistency specifications does
not allow to model secrecy requirements. A consistency spec-
ification thus corresponds to a trusted party which enables
dishonest parties to learn the inputs of honest parties. For
a more general setting where secrecy matters, one may use
security frameworks such as [Can01] or [MR11] and [Mau11].

B. Contributions and Outline

In this work, we investigate the separation between broad-
cast and authenticated channels by considering a classifica-
tion of consistency specifications. Given a set of consistency
specifications, one can consider its closure, i.e., all consistency
specifications which one can construct from this set. This leads
to a natural classification where two consistency specifications
are in the same class if they have the same closure. We
proceed as follows. First, we revisit the notion of consistency
specifications from [Mau04] and provide rigorous definitions
of the basic concepts. Then we introduce different flavors
of constructions and define a means of classification for
consistency specifications. In a second part we give a complete
classification of three-party specifications where a fixed party
can give a binary input. This provides some surprising insight
into the structure and hierarchy of these specifications.

II. PRELIMINARIES AND NOTATION

Let P = {P1, ..., Pn} be a set of n parties (also known as
players or processors). For convenience, we will sometimes
use i instead of Pi. We distinguish between the subset of
honest parties H ⊆ P and the dishonest parties in the
complement P \ H . Honest parties will execute protocol
instructions whereas dishonest parties can deviate arbitrarily
from the protocol. For a tuple of sets (M1, . . . ,Mn) and
a subset S ⊆ P , we denote by MS the Cartesian product
×i∈SMi. We denote by vS |S′ ∈ MS′ the projection of
vS ∈ MS to entries in S′ ⊆ S. For a subset L ⊆ MS we
can similarly define L|S′ := {vS |S′ | vS ∈ L}. Moreover we
write [n] for the set {1, . . . , n}.

A. Consistency specification

In the following we consider primitives and protocols where
each party Pi has an input from a finite input domain Di and

receives an output from a finite output domain Ri. We assume
that both Di and Ri are non-empty sets. If a party has no input
and/or no output, the corresponding domains are assumed to
be singletons containing the symbol ⊥. To model consistency
guarantees we use the notion of consistency specifications.

Definition 1 ([Mau04]). Consider non-empty P , DP , and RP
as above. A (P,DP ,RP)-consistency specification is a func-
tion assigning to every non-empty subset H ⊆ P and every
input vector xH ∈ DH a non-empty set C(H,xH) ⊆ RH ,
satisfying the monotonicity constraint: For any non-empty
subsets H ′ ⊆ H ⊆ P

C(H,xH)|H′ ⊆ C(H ′, xH|H′). (1)

Our definition of a consistency specification differs slightly
from the original version in [Mau04]. First, if all parties are
dishonest, i.e., H = ∅, there are no consistency guarantees to
be formulated. We therefore restrict the domain of consistency
specifications to non-empty subsets H ⊆ P . Secondly, we
require that the honest parties are guaranteed at least one
output, i.e., ∅ 6= C(H,xH) for any H and xH .

Example 1. An authenticated channel from Pi to Pj is a
consistency specification, denoted as AUTHi,j , where only Pi
has input (i.e., Dk = {⊥} for k 6= i) and where Pj’s output
is equal to the input of Pi if both of them are honest. There
are no other consistency constraints on the outputs of honest
parties. More formally, we have for all H ⊆ P and xH ∈ DH :

AUTHi,j(H,xH) =
{
yH ∈ RH |i, j ∈ H ⇒ yH|{j} = xH|{i}

}
Example 2. A broadcast channel for party Pi is denoted as
BCi. The formal definition is as follows.

BCi(H,xH) =
{
yH ∈ RH | ∃v

(
(∀j ∈ H \ {i} : yH|{j} = v)

∧ (i ∈ H ⇒ v = xH|{i})
)}

for all H ⊆ P where Dk = {⊥} for k 6= i.

In order to compare consistency specifications and the
strength of their consistency guarantees, one can use the
following natural (partial) ordering.

Definition 2. Consider two (P,DP ,RP)-consistency speci-
fications C1 and C2. Then C2 is stronger than C1, denoted
C1 � C2, if C2(H,xH) ⊆ C1(H,xH) for all non-empty subsets
H ∈ P and every xH ∈ DH .

III. PROTOCOLS AND CONSTRUCTIONS

A. Basic Constructions

A fundamental aspect of computer science is to realize
complex objects from simpler ones. In our context this leads to
the question whether one can construct a certain consistency
specification from weaker consistency specifications by means
of a protocol. A protocol execution consists of several rounds
where in each round j a consistency specification C(j) is
invoked. Each party Pi computes its input to C(j) as a
function f (j)i of its protocol input and the outputs it received
from previously invoked consistency specifications. At the

end each party Pi computes its protocol output as a function
gi of its input and all the outputs it received from invoked
specifications. More formally, a protocol is defined as a tuple
of functions. For ` ≥ 0 let ~C = (C(1), . . . , C(`)) be an `-tuple
of consistency specifications where C(j) is a (P,D(j)

P ,R(j)
P)-

consistency specification for j ∈ [`].

Definition 3 ([Mau04]). An `-round protocol π suitable for ~C
with input domains DP and output domains RP consists of a
tuple of functions (f

(j)
i , gi) for i ∈ P and j ∈ [`] where

f
(j)
i : Di ×R(1)

i × · · · × R
(j−1)
i → D(j)

i

and

gi : Di ×R(1)
i × · · · × R

(`)
i → Ri.

For convenience we will use f
(j)
H or gH to denote the

parallel composition1 of the corresponding functions fi, gi for
i ∈ H . We remark that a protocol only refers to input and
output domains. It does not define the particular specifications
which are invoked during an execution of the protocol. Note
that we allow zero-round protocols, i.e., protocols where no
specification is invoked. Given a tuple of ~C of consistency
specifications and a suitable protocol π, the execution of π on
~C constructs a new consistency specification.

Definition 4. A suitable protocol π for tuple ~C constructs
specification C from ~C, denoted ~C π−→ C, if C � π~C where

π~C(H,xH) =
{
yH ∈ RH

∣∣ ∀j ∈ [`] ∃y(j)H ∈ R
(j)
H :

y
(j)
H ∈ C

(j)
(
H, f

(j)
H (xH , y

(1)
H , . . . , y

(j−1)
H)

)
∧ yH = gH(xH , y

(1)
H , . . . , y

(`)
H)

}
for all non-empty subsets H ∈ P and every xH ∈ DH .

With this basic type of construction we can now introduce
derived types of constructions.

B. Constructions from Sets

In the setting of distributed computing it is common to
assume that parties are not restricted in the use of given
primitives. It is thus natural to consider constructions from a
set C of consistency specifications where each specification in
C may be invoked arbitrarily often during a protocol execution.

Definition 5. Let C be a set of consistency specifications. A
protocol π constructs specification C from C, denoted as

C
π−→ C,

if there exist a tuple ~C over C such that ~C π−→ C.

If a construction from C to C exists, we simply write C −→
C, and C 6−→ C otherwise. A set of consistency specifications
C′ is constructible from C, denoted by C −→ C′ if all C ∈

1Formally, for any i ∈ H , xH ∈ DH and y
(j)
H ∈ R(j)

H we have that

f
(j)
H (xH , y

(1)
H , . . . , y

(j−1)
H)|i = f

(j)
i (xH |i, y

(1)
H |i, . . . , y

(j−1)
H |i).

C′ can be constructed from C. We note that this notion of
construction is transitive in the following sense.

Lemma 1. Let C1,C2,C3 be sets of consistency specifications
for P . Suppose C1 −→ C2 and C2 −→ C3. Then C1 −→ C3.

The closure of a consistency specification set C with respect
to a consistency specification set T contains all specifications
in T which can be constructed from C.

Definition 6. The (relative) closure of C with respect to T is
defined as 〈C〉T := {C ∈ T | C −→ C} .

The closure is monotone, i.e., for C′ ⊆ C it holds that
〈C′〉T ⊆ 〈C〉T. We will omit T, if clear from the context, and
simply write 〈C〉. To classify a collection S = {C1, . . . ,Ck}
of consistency specification sets with respect to T one can
consider the different closures of the sets in S.

Definition 7. A classification of a collection S of consistency
specification sets with respect to T is the set {〈C〉T | C ∈ S}.
Two sets C,C′ ∈ S realize the same class if 〈C〉T = 〈C′〉T.

C. Constructions from Multisets

The assumption that parties can invoke given consistency
specifications arbitrary often is rather strong. One can therefore
consider a weaker type of construction where a given specifi-
cation can be used a limited number of times. Formally, this
leads to constructions from multisets where the multiplicity
of an element bounds the number of its invocation during a
protocol execution. A tuple ~C over multi-set C is therefore
suitable if the occurrence of an element C ∈ C in ~C is bounded
by its multiplicity.

Definition 8. Let C be a multiset of consistency specifications.
A protocol π constructs specification C from C , denoted as

C
π−→ C,

if there exist a tuple ~C suitable both for π and C such that
~C π−→ C.

The possibility of a multiset construction implies the pos-
sibility of a normal (set) construction, i.e., C

π−→ C implies
C

π−→ C for the underlying set C of the elements in C .

IV. CLASSIFICATION OF 3-PARTY SPECIFICATIONS

The goal of this section is to provide a motivating example
of a consistency specifications classification. For this purpose
we consider specifications for three parties P = {P1, P2, P3}
where P1 has a binary input and the other parties have binary
outputs.

Definition 9. The set of binary P1-input 3-party consis-
tency specifications, denoted Ω1, consists of all (P, {0, 1} ×
{⊥}2 , {⊥} × {0, 1}2)-consistency specifications.

We remark that the output of P1 is empty which is equiv-
alent to giving no consistency guarantees for P1. However,
this is not a real limitation as one can trivially construct any
(P, {0, 1} × {⊥}2 , {0, 1}3)-consistency specification using

one from Ω1. In the following we will omit empty inputs
and outputs, e.g. we will write b ∈ C({P1, P2} , b) instead
of (⊥, b) ∈ C({P1, P2} , (⊥, b)). For our classification we
assume that parties are pairwise connected by authenticated
channels and have access to a subset of specifications from
Ω1. Formally we thus consider a classification of the collection
S := {C ∪ AUTH | C ⊆ Ω1} with respect to T := Ω1 where
AUTH is the set of all authenticated channels for P .

A. Complete Classification of Ω1

In this section we show that Ω1 is divided into two
classes. First, we have the class 〈AUTH〉 which consists of
of all specifications which can be constructed from authen-
ticated channels. Second, we have the complement Ω1 \
〈AUTH〉 which consists of all specifications which allow
to construct broadcast given authenticated channels. In a
first step, we derive a sufficient and necessary condition for
C ∈ 〈AUTH〉 by considering the following sets of binary
tuples. Let MC = C({P2, P3}) and for any x ∈ {0, 1}
let M (x)

2,C = {(y2, y3) | y2 ∈ C({P1, P2} , x)}, and M
(x)
3,C =

{(y2, y3) | y3 ∈ C({P1, P3} , x)}.

Lemma 2. A specification C ∈ Ω1 can be constructed from
authenticated channels, i.e., C ∈ 〈AUTH〉, if M (0)

2,C ∩ MC ∩
M

(1)
3,C 6= ∅ and M (1)

2,C ∩MC ∩M
(0)
3,C 6= ∅.

Proof. To construct C from authenticated channels consider
the following protocol π. First, party P1 sends its input bit

P1

b

P2

g2(b2, b2,3)

P3

g3(b3,2, b3)

b2 b3

b3,2

b2,3

Figure 1: Protocol for Lemma 2.
to the other parties which exchange the received bits (cf.
Figure 1). The output of P2 is g2(b2, b2,3) for a function
g2 : {0, 1}2 → {0, 1} where b2 and b2,3 are the bits received
from P1 and P3. Analogously, P3 outputs g3(b3,2, b3). The
assumption of the Lemma allows us to define g2 and g3 as
follows. For any bit b ∈ {0, 1} let(

g2(b, b), g3(b, b)
)
∈ C({P1, P2, P3} , b) (2)

and (
g2(b, 1−b), g3(b, 1−b)

)
∈M (b)

2,C ∩MC ∩M
(1−b)
3,C . (3)

Note that for any b ∈ {0, 1} we have C({P1, P2, P3} , b) ⊆
M

(b)
2,C ∩MC ∩M

(b)
3,C and thus M (x)

2,C ∩MC ∩M
(y)
3,C 6= ∅ for any

x, y ∈ {0, 1}. Consider now the following cases. If everyone
is honest, we have b = b2 = b3 = b2,3 = b3,2. The output
of P2 and P3 is thus (g2(b, b), g3(b, b)) ∈ C({P1, P2, P3} , b).

For H = {P1, P2} we have b2 = b and the output of P2 is
therefore g2(b, b2,3) ∈ (M

(b)
2,C ∩MC ∩M

(b2,3)
3,C)|P2

. Thus by the
definition of M (b)

2,C it holds that g2(b, b2,3) ∈ C({P1, P2} , b).
For H = {P1, P3} it similarly holds that b3 = b and
g3(b3,2, b) ∈ C({P1, P3} , b). If H = {P2, P3}, it holds
that b2 = b3,2 and b3 = b2,3. The output of the parties is
therefore (g2(b2, b3), g3(b2, b3)) ∈ M (b2)

2,C ∩MC ∩M
(b3)
3,C and

thus (g2(b2, b3), g3(b2, b3)) ∈ MC = C({P2, P3}). All the
other cases follow directly from the monotonicity of C. The
protocol π therefore constructs C from authenticated channels.

The next Lemma shows that the above condition is also
necessary for C ∈ 〈AUTH〉.

Lemma 3. A specification C ∈ Ω1 with M (0)
2,C ∩MC ∩M

(1)
3,C =

∅ or M (1)
2,C ∩MC ∩M

(0)
3,C = ∅ cannot be constructed from

authenticated channels, i.e., C 6∈ 〈AUTH〉.

Proof. The following proof is generalization of a proof tech-
nique in [FLM85]. Consider a C ∈ Ω1 with M

(b)
2,C ∩ MC ∩

M
(1−b)
3,C = ∅ for a b ∈ {0, 1}. Towards a contradiction, let us

assume that there exists a protocol π such that AUTH
π−→ C.

Then there exist (deterministic) systems Π1,Π2,Π3 for parties
P1, P2, P3. Each system executes the protocol part of the
corresponding parties and can be connected to two other
systems. Consider a dishonest P2 emulating Π1 and Π2 in

Π1 Π2

Π3Π1

b

1−b

(a) P2 dishonest

Π1 Π2

Π3Π1

b

1−b

(b) P1 dishonest

Π1 Π2

Π3Π1

b

1−b

(c) P3 dishonest

Figure 2: Corruption Scenarios for Lemma 3.

a normal protocol execution as in Figure 2a where a bit in
a box next to a system denotes the system’s input. As the
protocol constructs C system Π3 must output a bit b3 in
C({P1, P3} , 1− b). Next assume that a dishonest P1 emulates
Π1 twice but with different inputs as in Figure 2b. In this
case the output tuple (b2, b3) of systems Π2 and Π3 must be
in C({P2, P3}). Lastly, suppose that a dishonest P3 emulates
Π1 and Π3 as in Figure 2c. Here the output bit b2 of Π2 must
be in C({P1, P2} , b). Note that those three cases describe the

same combined system which outputs bit b2 at Π2 and bit b3
at Π3. It follows that (b2, b3) ∈M (b)

2,C ∩MC ∩M
(1−b)
3,C = ∅, a

contradiction. Therefore there exists no protocol constructing
C from authenticated channels.

We already know that broadcast BC1 can not be constructed
from authenticated channels. Moreover, observe that any spec-
ification in Ω1 can be constructed from broadcast.

Lemma 4. For any C ∈ Ω1, {BC1} −→ C.

Proof. The construction is trivially achieved with the follow-
ing protocol. First, P1 broadcasts its input b. Then parties
P2, P3 output some fixed tuple in C({P1, P2, P3} , b).

In the following we will show that any specification in
C ∈ Ω1 \ 〈AUTH〉 in addition to authenticated channels is
enough to construct broadcast BC1. The condition of Lemma 3
implies that any C′ ∈ Ω1 \ 〈AUTH〉 is equivalent2 to a
C ∈ Ω1 \ 〈AUTH〉 with C({P1, P2, P3} , b) = {(b, b)} for
b ∈ {0, 1}. This means that it is enough to henceforth C
instead of C′. Moreover, it follows from the Lemma that
2 ≤

∣∣C({P2, P3})
∣∣ ≤ 3, C({P1, P2} , 0) 6= C({P1, P2} , 1),

and C({P1, P3} , 0) 6= C({P1, P3} , 1). The above conditions
imply that such a C is similar to broadcast BC1 except that it
offers (potentially) weaker consistency and validity guarantees
(for P2 or P3). One can therefore describe the weakening by a
triple in {♦, 0, 1}3 where ♦ means that the specific component
is not weakened at all.

Definition 10. Let α, β, γ ∈ {♦, 0, 1}. The weak broadcast
(α, β, γ)-wBC1 is defined as follows:
• (α, β, γ)-wBC1({P1, P2, P3} , b) = {(b, b)}
• (α, β, γ)-wBC1({P1, P2} , b) =

{
{b} if b 6= α
{0, 1} if b = α

• (α, β, γ)-wBC1({P1, P3} , b) =

{
{b} if b 6= β
{0, 1} if b = β

• (α, β,♦)-wBC1({P2, P3}) = {(0, 0), (1, 1)}
(α, β, 0)-wBC1({P2, P3}) = {(0, 0), (0, 1), (1, 1)}
(α, β, 1)-wBC1({P2, P3}) = {(0, 0), (1, 0), (1, 1)}

For example, weak broadcast (♦,♦, 0)-wBC1 satisfies
the validity condition of normal broadcast, but offers the
weaker consistency guarantee (♦,♦, 0)-wBC1({P2, P3}) =
{(0, 0), (0, 1), (1, 1)}. Note also that BC1 = (♦,♦,♦)-wBC1.
The condition in Lemma 3 implies that some variants of weak
broadcast can be constructed using authenticated channels.

Lemma 5. For any x ∈ {♦, 0, 1} and y ∈ {0, 1} the specifica-
tions (x, y, y)-wBC1, (y, x, 1−y)-wBC1, and (y, y, x)-wBC1

are in 〈AUTH〉.

Proof. Can be shown directly using Lemma 3.

It turns out that given authenticated channels one can
construct BC1 from rather weak variants of wBC1. The first
variant we consider is (♦,♦, γ)-wBC1 for γ ∈ {♦, 0, 1} which
is in Ω1 \ 〈AUTH〉 (cf. Lemma 3).

2Two specifications C′ and C are equivalent if {C′} −→ C and {C} −→ C′.

Lemma 6. For any γ ∈ {♦, 0, 1},

AUTH ∪ {(♦,♦, γ)-wBC1} −→ BC1.

Proof. For γ = ♦ we have BC1 = (♦,♦,♦)-wBC1. For
γ 6= ♦ and input bit b of P1 consider the following protocol.
First, P1 sends (b, 1 − b) to the other parties using two
(♦,♦, γ)-wBC1 invocations. Denote by (b2, c2) (resp. (b3, c3))
the bits received by P2 (resp. P3). Then P2 and P3 exchange
their bits using authenticated channels where b2,3, c2,3 (resp.
b3,2, c3,2) denote the bits received by P2 (resp. P3). If b2 6= c2,
party P2 outputs b2. Otherwise, if b2,3 6= c2,3, P2 outputs
b2,3. Otherwise P2 outputs 0. The output of P3 is computed
analogous. Consider now the following cases. If everyone is
honest, we have b2 = b3 = b and c2 = c3 = 1− b. The output
of P2, P3 is thus (b2, b3) = (b, b). For H = {P1, P2} we have
b2 = b and c2 = 1− b. The output of P2 is therefore b2 = b.
For H = {P1, P3} we have b3 = b and c3 = 1 − b. The
output of P3 is therefore b3 = b. If H = {P2, P3}, we have
(b2,3, c2,3) = (b3, c3) and (b3,2, c3,2) = (b2, c2). If b2 6= b3,
we have c2 = c3 as (1−γ, γ) 6∈ (♦,♦, γ)-wBC1. It is now
easy to check that P2 and P3 will output the same bit.

Almost all weak-broadcast specifications where all three
components are weakened are in 〈AUTH〉 (cf. Lemma 5).
The two exceptions are (0, 1, 0)-wBC1 and (1, 0, 1)-wBC1.
Surprisingly one is able to construct broadcast from each of
them given authenticated channels.

Lemma 7. AUTH ∪ {(0, 1, 0)-wBC1} −→ BC1 and AUTH ∪
{(1, 0, 1)-wBC1} −→ BC1.

Proof. With Lemma 6 it is enough to show that one
can construct (♦,♦, 0)-wBC1 from (0, 1, 0)-wBC1 (resp.
(♦,♦, 1)-wBC1 from (1, 0, 1)-wBC1. For (♦,♦, 0)-wBC1 one
can show this analogously to the proof of Lemma 6 using the
following protocol.

First, P1 sends its bit b to the other parties using an
authenticated channel, where b2 (resp. b3) denote the bit
received by P2 (resp. P3). In the next step P1 sends b over
(0, 1, 0)-wBC1, where c2 (resp. c3) denotes the bit received
by P2 (resp. P3). Finally, party P2 outputs bit o2 and party
P3 outputs bit o3 where:

o2 =

{
1 if (b2, c2) = (1, 1)
0 otherwise

and
o3 =

{
0 if (b3, c3) = (0, 0)
1 otherwise.

Using the monotonicity of C ∈ Ω1 \ 〈AUTH〉 it is easy
to show that one can either construct (0, 1, 0)-wBC1 or
(1, 0, 1)-wBC1 from C. With Lemma 7 this implies that given
authenticated channels one can construct broadcast from C.

Lemma 8. Let C ∈ Ω1 \ 〈AUTH〉, then AUTH ∪ {C}→BC1.

We note that the availability of authenticated channels is
crucial. For instance, one can show that (♦,♦, 0)-wBC1 is

strictly weaker than BC1, i.e., {(♦,♦, 0)-wBC1} 6→ BC1. The
following theorem summarizes our results.

Theorem 1. Given authenticated channels and a set of spec-
ifications C ⊆ Ω1 one can either construct everything or just
specifications which can be constructed from authenticated
channels. In other words either 〈C ∪ AUTH〉 = 〈{BC1}〉 = Ω1

or 〈C ∪ AUTH〉 = 〈AUTH〉.

V. DISCUSSION AND OPEN PROBLEMS

In this work we have proposed a classification of consis-
tency specifications according to the consistency guarantees
they allow to achieve. As a motivating example we have given
a complete classification of specifications where a single party
can give a binary input. Although we only considered a simple
case, the classification provides some unexpected insights into
the structure of consistency specifications.

ACKNOWLEDGMENTS

Our research was supported by the Swiss National Science
Foundation (SNF), project no. 200020-132794.

REFERENCES

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards opti-
mal distributed consensus (extended abstract). In 30th FOCS, pages
410–415, Research Triangle Park, North Carolina, October 30 –
November 1, 1989. IEEE Computer Society Press.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd FOCS, pages 136–145, Las Vegas,
Nevada, USA, October 14–17, 2001. IEEE Computer Society Press.

[FLM85] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy im-
possibility proofs for distributed consensus problems. In Michael A.
Malcolm and H. Raymond Strong, editors, 4th ACM PODC, pages
59–70, Minaki, Ontario, Canada, August 5–7, 1985. ACM.

[FM00] Matthias Fitzi and Ueli M. Maurer. From partial consistency to
global broadcast. In 32nd ACM STOC, pages 494–503, Portland,
Oregon, USA, May 21–23, 2000. ACM Press.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. 4:382–401, July 1982.

[Mau04] Ueli Maurer. Towards a theory of consistency primitives. In
R. Guerraoui, editor, International Symposium on Distributed Com-
puting — DISC 2004, volume 3274 of Lecture Notes in Computer
Science, pages 379–389. Springer-Verlag, October 2004.

[Mau11] Ueli Maurer. Constructive cryptography – a new paradigm for secu-
rity definitions and proofs. In S. Moedersheim and C. Palamidessi,
editors, Theory of Security and Applications (TOSCA 2011), vol-
ume 6993 of Lecture Notes in Computer Science, pages 33–56.
Springer-Verlag, April 2011.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In Bernard
Chazelle, editor, ICS 2011, pages 1–21, Tsinghua University, Bei-
jing, China, January 7–9, 2011. Tsinghua University Press.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic
pseudosignatures and byzantine agreement for t ≥ n/3. In Research
report. IBM Research, 1996.

	Introduction
	Summary of Known Results
	Contributions and Outline

	Preliminaries and Notation
	Consistency specification

	Protocols and Constructions
	Basic Constructions
	Constructions from Sets
	Constructions from Multisets

	Classification of 3-Party Specifications
	Complete Classification of 1

	Discussion and Open Problems
	References

