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Abstract. Topology-hiding communication protocols allow a set of parties, connected by an in-
complete network with unknown communication graph, where each party only knows its neighbors,
to construct a complete communication network such that the network topology remains hidden
even from a powerful adversary who can corrupt parties. This communication network can then be
used to perform arbitrary tasks, for example secure multi-party computation, in a topology-hiding
manner.
Previously proposed protocols could only tolerate passive corruption. This paper proposes protocols
that can also tolerate fail-corruption (i.e., the adversary can crash any party at any point in
time) and so-called semi-malicious corruption (i.e., the adversary can control a corrupted party’s
randomness), without leaking more than an arbitrarily small fraction of a bit of information about
the topology. A small-leakage protocol was recently proposed by Ball et al. [Eurocrypt’18], but only
under the unrealistic set-up assumption that each party has a trusted hardware module containing
secret correlated pre-set keys, and with the further two restrictions that only passively corrupted
parties can be crashed by the adversary, and semi-malicious corruption is not tolerated. Since
leaking a small amount of information is unavoidable, as is the need to abort the protocol in case
of failures, our protocols seem to achieve the best possible goal in a model with fail-corruption.
Further contributions of the paper are applications of the protocol to obtain secure MPC protocols,
which requires a way to bound the aggregated leakage when multiple small-leakage protocols are
executed in parallel or sequentially. Moreover, while previous protocols are based on the DDH
assumption, a new so-called PKCR public-key encryption scheme based on the LWE assumption
is proposed, allowing to base topology-hiding computation on LWE. Furthermore, a protocol using
fully-homomorphic encryption achieving very low round complexity is proposed.

1 Introduction

1.1 Topology-Hiding Computation

Secure communication over an insecure network is one of the fundamental goals of cryptog-
raphy. The security goal can be to hide different aspects of the communication, ranging from
the content (secrecy), the participants’ identity (anonymity), the existence of communication
(steganography), to hiding the topology of the underlying network in case it is not complete.

Incomplete networks arise in many contexts, such as the Internet of Things (IoT) or ad-hoc
vehicular networks. Hiding the topology can, for example, be important because the position of
a node within the network depends on the node’s location. This could in information about the
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node’s identity or other confidential parameters. The goal is that parties, and even colluding
sets of parties, can not learn anything about the network, except their immediate neighbors.

Incomplete networks have been studied in the context of communication security, referred to
as secure message transmission (see, e.g.[DDWY90]), where the goal is to enable communication
between any pair of entities, despite an incomplete communication graph. Also, anonymous
communication has been studied extensively (see, e.g. [Cha81, RC88, SGR97]). Here, the goal is
to hide the identity of the sender and receiver in a message transmission. A classical technique to
achieve anonymity is the so-called mix-net technique, introduced by Chaum [Cha81]. Here, mix
servers are used as proxies which shuffle messages sent between peers to disable an eavesdropper
from following a message’s path. The onion routing technique [SGR97, RC88] is perhaps the
most known instantiation of the mix-technique. Another anonymity technique known as Dining
Cryptographers networks, in short DC-nets, was introduced in [Cha88] (see also [Bd90, GJ04]).
However, none of these approaches can be used to hide the network topology. In fact, message
transmission protocols assume (for their execution) that the network graph is public knowledge.

The problem of topology-hiding communication was introduced by Moran et al. [MOR15].
The authors propose a broadcast protocol in the cryptographic setting, which does not reveal
any additional information about the network topology to an adversary who can access the in-
ternal state of any number of passively corrupted parties (that is, they consider the semi-honest
setting). This allows to achieve topology-hiding MPC using standard techniques to transform
broadcast channels into secure point-to-point channels. At a very high level, [MOR15] uses a
series of nested multi-party computations, in which each node is emulated by a secure computa-
tion of its neighbor. This emulation then extends to the entire graph recursively. In [HMTZ16],
the authors improve this result and provide a construction that makes only black-box use of
encryption and where the security is based on the DDH assumption. However, both results are
feasible only for graphs with logarithmic diameter. Topology hiding communication for certain
classes of graphs with large diameter was described in [AM17]. This result was finally extended
to allow for arbitrary (connected) graphs in [ALM17a].

A natural next step is to extend these results to settings with more powerful adversaries.
Unfortunately, even a protocol in the setting with fail-corruptions (in addition to passive corrup-
tions) turns out to be difficult to achieve. In fact, as shown already in [MOR15], some leakage
in the fail-stop setting is inherent. It is therefore no surprise that all previous protocols (secure
against passive corruptions) leak information about the network topology if the adversary can
crash parties. The core problem is that crashes can interrupt the communication flow of the
protocol at any point and at any time. If not properly dealt with by the protocol, those out-
ages cause shock waves of miscommunication, which allows the adversary to probe the network
topology.

A first step in this direction was recently achieved in [BBMM18] where a protocol for
topology-hiding communication secure against a fail-stop adversary is given. However, the re-
silience against crashes comes at a hefty price; the protocol requires that parties have access to
secure hardware modules which are initialized with correlated, pre-shared keys. Their protocol
provides security with abort and the leakage is arbitrarily small.

In the information-theoretic setting, the main result is negative [HJ07]: any MPC protocol
in the information-theoretic setting inherently leaks information about the network graph. They
also show that if the routing table is leaked, one can construct an MPC protocol which leaks
no additional information.

1.2 Comparison to Previous Work

In [ALM17a] the authors present a broadcast protocol for the semi-honest setting based on
random walks. This broadcast protocol is then compiled into a full topology-hiding computation
protocol. However, the random walk protocol fails spectacularly in the presence of fail-stop
adversaries, leaking a lot of information about the structure of the graph. Every time a node
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aborts, any number of walks get cut, meaning that they no longer carry any information. When
this happens, adversarial nodes get to see which walks fail along which edges, and can get a
good idea of where the aborting nodes are in the graph.

We also note that, while we use ideas from [BBMM18], which achieves the desired result in a
trusted-hardware model, we cannot simply use their protocol and substitute the secure hardware
box for a standard primitive. In particular, they use the fact that each node can maintain an
encrypted “image” of the entire graph by combining information from all neighbors, and use
that information to decide whether to give output or abort. This appears to require both some
form of obfuscation and a trusted setup, whereas our protocol uses neither.

1.3 Contributions

In this paper we propose the first topology-hiding MPC protocol secure against passive and fail-
stop adversaries (with arbitrarily small leakage) that is based on standard assumptions. Our
protocol does not require setup, and its security can be based on either the DDH, QR or LWE
assumptions. A comparison of our results to previous works in topology-hiding communication
is found in Table 1.

Theorem 1 (informal). If DDH, QR or LWE is hard, then for any MPC functionality F,
there exists a topology-hiding protocol realizing F for any network graph G leaking at most an
arbitrarily small fraction p of a bit, which is secure against an adversary that does any number
of static passive corruptions and adaptive crashes. The round and communication complexity is
polynomial in the security parameter κ and 1/p.

Table 1. Adversarial model and security assumptions of existing topology-hiding broadcast protocols. The table
also shows the class of graphs for which the protocols have polynomial communication complexity in the security
parameter and the number of parties.

Adversary Graph Hardness Asm. Model Reference

semi-honest

log diam. Trapdoor Perm. Standard [MOR15]
log diam. DDH Standard [HMTZ16]

cycles, trees,
log circum. DDH Standard [AM17]

arbitrary DDH or QR Standard [ALM17a]
fail-stop arbitrary OWF Trusted Hardware [BBMM18]

semi-malicious
& fail-stop arbitrary DDH or QR

or LWE Standard [This work]

Our topology-hiding MPC protocol is obtained by compiling a MPC protocol from a topo-
logy-hiding broadcast protocol leaking at most a fraction p of a bit. We note that although
it is well known that without leakage any functionality can be implemented on top of secure
communication, this statement cannot be directly lifted to the setting with leakage. In essence,
if a communication protocol is used multiple times, it leaks multiple bits. However, we show
that our broadcast protocol, leaking at most a fraction p of a bit, can be executed sequentially
and in parallel, such that the result leaks also at most the same fraction p. As a consequence,
any protocol can be compiled into one that hides topology and known results on implementing
any multiparty computation can be lifted to the topology hiding setting. However, this incurs
a multiplicative overhead in the round complexity.

We then present a topology hiding protocol to evaluate any poly-time function using FHE
whose round complexity will amount to that of a single broadcast execution. To do that, we
first define an enhanced encryption scheme, which we call Deeply Fully-Homomorphic Public-
Key Encryption (DFH-PKE), with similar properties as the PKCR scheme presented in [AM17,
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ALM17a] and provide an instantiation of DFH-PKE under FHE. Next, we show how to obtain
a protocol using DFH-PKE to evaluate any poly-time function in a topology hiding manner.

We also explore another natural extension of semi-honest corruption, the so-called semi-
malicious setting. As for passive corruption, the adversary selects a set of parties and gets
access to their internal state. But in addition, the adversary can also set their randomness
during the protocol execution. This models the setting where a party uses an untrusted source
of randomness which could be under the control of the adversary. This scenario is of interest
as tampered randomness sources have caused many security breaches in the past [HDWH12,
CNE+14]. In this paper, we propose a general compiler that enhances the security of protocols
that tolerate passive corruption with crashes to semi-malicious corruption with crashes.

2 Preliminaries

2.1 Notation

For a public-key pk and a message m, we denote the encryption of m under pk by [m]pk.
Furthermore, for k messages m1, . . . ,mk, we denote by [m1, . . . ,mk]pk a vector, containing the
k encryptions of messages mi under the same key pk.

For an algorithm A(·), we write A(· ;U∗) whenever the randomness used in A(·) should be
made explicit and comes from a uniform distribution. By ≈c we denote that two distribution
ensembles are computationally indistinguishable.

2.2 Model of Topology-Hiding Communication

Adversary. Most of our results concern an adversary, who can statically passively corrupt an
arbitrary set of parties Zp, with

∣∣Zp∣∣ < n. Passively corrupted parties follow the protocol
instructions (this includes the generation of randomness), but the adversary can access their
internal state during the protocol.

A semi-malicious corruption (see, e.g., [AJL+12]) is a stronger variant of a passive corrup-
tion. Again, we assume that the adversary selects any set of semi-malicious parties Zs with∣∣Zs∣∣ < n before the protocol execution. These parties follow the protocol instructions, but the
adversary can access their internal state and can additionally choose their randomness.

A fail-stop adversary can adaptively crash parties. After being crashed, a party stops sending
messages. Note that crashed parties are not necessarily corrupted. In particular, the adversary
has no access to the internal state of a crashed party unless it is in the set of corrupted parties.
This type of fail-stop adversary is stronger and more general than the one used in [BBMM18],
where only passively corrupted parties can be crashed. In particular, in our model the adversary
does not necessarily learn the neighbors of crashed parties, whereas in [BBMM18] they are
revealed to it by definition.

Communication Model. We state our results in the UC framework. We consider a syn-
chronous communication network. Following the approach in [MOR15], to model the restricted
communication network we define the Fnet-hybrid model. The Fnet functionality takes as in-
put a description of the graph network from a special “graph party” Pgraph and then returns
to each party Pi a description of its neighborhood. After that, the functionality acts as an
“ideal channel” that allows parties to communicate with their neighbors according to the graph
network.

Similarly to [BBMM18], we change the Fnet functionality from [MOR15] to deal with a
fail-stop adversary.
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The functionality keeps the following variables: the set of crashed parties C and the graph G. Initially, C = ∅
and G = (∅,∅).

Initialization Step:

1: The party Pgraph sends graph G′ to Fnet. Fnet sets G = G′.
2: Fnet sends to each party Pi its neighborhood NG(Pi).

Communication Step:

1: If the adversary crashes party Pi, then Fnet sets C = C ∪ {Pi}.
2: If a party Pi sends the command (Send, j,m), where Pj ∈ NG(Pi) and m is the message to Pj , to Fnet

and Pi /∈ C, then Fnet outputs (i,m) to party Pj .

Functionality Fnet

Observe that since Fnet gives local information about the network graph to all corrupted
parties, any ideal-world adversary should also have access to this information. For this reason,
similar to [MOR15], we use in the ideal-world the functionality Finfo, which contains only the
Initialization Step of Fnet.

To model leakage we extend Finfo by a leakage phase, where the adversary can query a
(possibly probabilistic) leakage function L once. The inputs to L include the network graph,
the set of crashed parties and arbitrary input from the adversary.

We say that a protocol leaks one bit of information if the leakage function L outputs one
bit. We also consider the notion of leaking a fraction p of a bit. This is modeled by having L
output the bit only with probability p (otherwise, L outputs a special symbol ⊥). Here our
model differs from the one in [BBMM18], where in case of the fractional leakage, L always
gives the output, but the simulator is restricted to query its oracle with probability p over
its randomness. As noted there, the formulation we use is stronger. We denote by FLinfo the
information functionality with leakage function L.

The functionality keeps the following variables: the set of crashed parties C and the graph G. Initially, C = ∅
and G = (∅,∅).

Initialization Step:

1: The party Pgraph sends graph G′ = (V,E) to FLinfo. FLinfo sets G = G′.
2: FLinfo sends to each party Pi its neighborhood NG(Pi).

Leakage Step:

1: If the adversary crashes party Pi, then FLinfo sets C = C ∪ {Pi}.
2: If the adversary sends the command (Leak, q) to FLinfo for the first time, then FLinfo outputs L(q, C, G) to

the adversary.

Functionality FLinfo

Security Model. Our protocols provide security with abort. In particular, the adversary can
choose some parties, who do not receive the output (while the others still do). That is, no
guaranteed output delivery and no fairness is provided. Moreover, the adversary sees the output
before the honest parties and can later decide which of them should receive it.

Technically, we model such ability in the UC framework as follows: First, the ideal world
adversary receives from the ideal functionality the outputs of the corrupted parties. Then, it
inputs to the functionality an abort vector containing a list of parties who do not receive the
output.

Definition 1. We say that a protocol Π topology-hidingly realizes a functionality F with L-
leakage, in the presence of an adversary who can statically passive corrupt and adaptively crash
any number of parties, if it UC-realizes (FLinfo ‖ F) in the Fnet-hybrid model.
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2.3 Background

Graphs and Random Walks. In an undirected graph G = (V,E) we denote by NG(Pi) the
neighborhood of Pi ∈ V . The k-neighborhood of a party Pi ∈ V is the set of all parties in V
within distance k to Pi.

In our work we use the following lemma from [ALM17a]. It states that in an undirected
connected graph G, the probability that a random walk of length 8|V |3τ covers G is at least
1− 1

2τ .

Lemma 1 ([ALM17a]). Let G = (V,E) be an undirected connected graph. Further letW(u, τ)
be a random variable whose value is the set of nodes covered by a random walk starting from u
and taking 8|V |3τ steps. We have

Pr
W

[W(u, τ) = V ] ≥ 1− 1
2τ .

PKCR Encryption. As in [ALM17a], our protocols require a public key encryption scheme
with additional properties, called Privately Key Commutative and Rerandomizable encryption.
We assume that the message space is bits. Then, a PKCR encryption scheme should be: privately
key commutative and homomorphic with respect to the OR operation5. We formally define these
properties below.

Let PK, SK and C denote the public key, secret key and ciphertext spaces. As any public
key encryption scheme, a PKCR scheme contains the algorithms KeyGen : {0, 1}∗ → PK×SK,
Encrypt : {0, 1} × PK → C and Decrypt : C × SK → {0, 1} for key generation, encryption and
decryption respectively (where KeyGen takes as input the security parameter).

Privately Key-Commutative. We require PK to form a commutative group under the oper-
ation ~. So, given any pk1, pk2 ∈ PK, we can efficiently compute pk3 = pk1 ~ pk2 ∈ PK and
for every pk, there exists an inverse denoted pk−1.

This group must interact well with ciphertexts; there exists a pair of efficiently computable
algorithms AddLayer : C × SK → C and DelLayer : C × SK → C such that
– For every public key pair pk1, pk2 ∈ PK with corresponding secret keys sk1 and sk2, message
m ∈M, and ciphertext c = [m]pk1 ,

AddLayer(c, sk2) = [m]pk1~pk2 .

– For every public key pair pk1, pk2 ∈ PK with corresponding secret keys sk1 and sk2, message
m ∈M, and ciphertext c = [m]pk1 ,

DelLayer(c, sk2) = [m]pk1~pk−1
2
.

Notice that we need the secret key to perform these operations, hence the property is called
privately key-commutative.

OR-Homomorphic. We also require the encryption scheme to be OR-homomorphic, but in
such a way that parties cannot tell how many 1’s or 0’s were OR’d (or who OR’d them). We
need an efficiently-evaluatable homomorphic-OR algorithm, HomOR : C × C → C, to satisfy the
following: for every two messages m,m′ ∈ {0, 1} and every two ciphertexts c, c′ ∈ C such that
Decrypt(c, sk) = m and Decrypt(c, sk) = m′,{

(m,m′, c, c′, pk,Encrypt(m ∨m′, pk;U∗))
}

≈c{
(m,m′, c, c′, pk,HomOR(c, c′, pk;U∗))

}
5 PKCR encryption was introduced in [AM17, ALM17a], where it had three additional properties: key commuta-

tivity, homomorphism and rerandomization, hence, it was called Privately Key Commutative and Rerandom-
izable encryption. However, rerandomization is actually implied by the strengthened notion of homomorphism.
Therefore, we decided to not include the property, but keep the name.
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Note that this is a stronger definition for homomorphism than usual; usually we only require
correctness, not computational indistinguishability.

In [HMTZ16], [AM17] and [ALM17a], the authors discuss how to get this kind of homo-
morphic OR under the DDH assumption, and later [ALM17b] show how to get it with the
QR assumption. For more details on other kinds of homomorphic cryptosystems that can be
compiled into OR-homomorphic cryptosystems, see [ALM17b].

Random Walk Approach [ALM17a]. Our protocol builds upon the protocol from [ALM17a].
We give a high level overview. To achieve broadcast, the protocol computes the OR. Every party
has an input bit: the sender inputs the broadcast bit and all other parties use 0 as input bit.
Computing the OR of all those bits is thus equivalent to broadcasting the sender’s message.

First, let us explain a simplified version of the protocol that is unfortunately not sound,
but gets the basic principal across. Each node encrypts its bit under a public key and forwards
it to a random neighbor. The neighbor OR’s its own bit, adds a fresh public key layer, and it
forwards the ciphertext to a randomly chosen neighbor. Eventually, after about O(κn3) steps,
the random walk of every message visits every node in the graph, and therefore, every message
will contain the OR of all bits in the network. Now we start the backwards phase, reversing the
walk and peeling off layers of encryption.

This scheme is not sound because seeing where the random walks are coming from reveals
information about the graph! So, we need to disguise that information. We will do so by using
correlated random walks, and will have a walk running down each direction of each edge at each
step (so 2× number of edges number of walks total). The walks are correlated, but still random.
This way, at each step, each node just sees encrypted messages all under new and different keys
from each of its neighbors. So, intuitively, there is no way for a node to tell anything about
where a walk came from.

3 Topology-Hiding Broadcast

In this section we present a protocol, which securely realizes the broadcast functionality FBC
(with abort) in the Fnet-hybrid world and leaks at most an arbitrarily small (but not negligible)
fraction of a bit. If no crashes occur, the protocol does not leak any information. The protocol
is secure against an adversary that (a) controls an arbitrary static set of passively corrupted
parties and (b) adaptively crashes any number of parties. Security can be based either on the
DDH, the QR or the LWE assumption. To build intuition we first present the simple protocol
variant which leaks at most one bit.

When a party Pi sends a bit b ∈ {0, 1} to the functionality FBC, then FBC sends b to each party Pj ∈ P.

Functionality FBC

3.1 Protocol Leaking One Bit

We first introduce the broadcast protocol variant BC-OB which leaks at most one-bit. The proto-
col is divided into n consecutive phases, where, in each phase, the parties execute a modification
of the random-walk protocol from [ALM17a]. More specifically, we introduce the following mod-
ifications:

Single Output Party: There will be n phases. In each phase only one party, Po, gets the
output. Moreover, it learns the output from exactly one of the random walks it starts.
To implement this, in the respective phase all parties except Po start their random walks
with encryptions of 1 instead of their input bits. This ensures that the outputs they get
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from the random walks will always be 1. We call these walks dummy since the contain no
information. Party Po, on the other hand, starts exactly one random walk with its actual
input bit (the other walks it starts with encryptions of 1). This ensures (in case no party
crashes) that Po actually learns the broadcast bit.

Happiness Indicator: Every party Pi holds an unhappy-bit ui. Initially, every Pi is happy,
i.e., ui = 0. If a neighbor of Pi crashes, then in the next phase Pi becomes unhappy and
sets ui = 1. The idea is that an unhappy party makes all phases following the crash become
dummy.
This is implemented by having the parties send along the random walk, instead of a single
bit, an encrypted tuple [b, u]pk. The bit u is the OR of the unhappy-bits of the parties in the
walk, while b is the OR of their input bits and their unhappy-bits. In other words, a party
Pi on the walk homomorphically ORs bi ∨ ui to b and ui to u.
Intuitively, if all parties on the walk were happy at the time of adding their bits, b will
actually contain the OR of their input bits and u will be set to 0. On the other hand, if any
party was unhappy, b will always be set to 1, and u = 1 will indicate an abort.

Intuitively, the adversary learns a bit of information only if it manages to break the one
random walk which Po started with its input bit (all other walks contain the tuple [1, 1]).
Moreover, if it crashes a party, then all phases following the one with the crash abort, hence,
they do not leak any information.

More formally, parties execute, in each phase, protocol RandomWalkPhase. This protocol
takes as global inputs the length T of the random walk and the Po which should get output.
Additionally, each party Pi has input (di, bi, ui) where di is its number of neighbors, ui is its
unhappy-bit, and bi is its input bit.

Initialization Stage:

1: Each party Pi generates T · di keypairs (pk(r)
i→j , sk(r)

i→j) � KeyGen(1κ) where r ∈ {1, . . . , T} and j ∈
{1, . . . , di}.

2: Each party Pi generates T− 1 random permutations on di elements
{
π

(2)
i , . . . , π

(T)
i

}
3: For each party Pi, if any of Pi’s neighbors crashed in any phase before the current one, then Pi becomes

unhappy, i.e., sets ui = 1.
Aggregate Stage: Each party Pi does the following:

1: if Pi is the recipient Po then
2: Party Pi sends to the first neighbor the ciphertext [bi ∨ ui, ui]pk(1)

i→1
and the public key pk(1)

i→1, and to

any other neighbor Pj it sends ciphertext [1, 1]
pk(1)

i→j

and the public key pk(1)
i→j .

3: else
4: Party Pi sends to each neighbor Pj ciphertext [1, 1]

pk(1)
i→j

and the key pk(1)
i→j .

5: end if
6: // Add layer while ORing own input bit
7: for any round r from 2 to T do
8: For each neighbor Pj of Pi, do the following (let k = π

(r)
i (j)):

9: if Pi did not receive a message from Pj then
10: Party Pi sends ciphertext [1, 1]

pk(r)
i→k

and key pk(r)
i→k to neighbor Pk.

11: else // AddLayer and HomOR are applied component-wise
12: Let c(r−1)

j→i and pk(r−1)
j→i be the ciphertext and the public key Pi received from Pj . Party Pi computes

pk(r)
i→k = pk(r−1)

j→i ~ pk(r)
i→k and

ĉ(r)
i→k ← AddLayer

(
c(r−1)
j→i , sk(r)

i→k

)
.

13: Pi computes [bi ∨ ui, ui]pk(r)
i→k

and

c(r)
i→k = HomOR

(
[bi ∨ ui, ui]pk(r)

i→k

, ĉ(r)
i→k, pk(r)

i→k

)
.

Protocol RandomWalkPhase(T, Po, (di, bi, ui)Pi∈P)
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14: Party Pi sends ciphertext c(r)
i→k and public key pk(r)

i→k to neighbor Pk.
15: end if
16: end for
Decrypt Stage: Each party Pi does the following:

1: For each neighbor Pj of Pi, if Pi did not receive a message from Pj at round T of the Aggre-
gate Stage, then it sends ciphertext e(T)

i→j = [1, 1]
pk(T)

j→i

to Pj . Otherwise, Pi sends to Pj e(T)
i→j =

HomOR
(

[bi ∨ ui, ui]pk(T)
j→i

, c(T)
j→i, pk(T)

j→i

)
.

2: for any round r from T to 2 do
3: For each neighbor Pk of Pi:
4: if Pi did not receive a message from Pk then
5: Party Pi sends e(r−1)

i→j = [1, 1]
pk(r−1)

j→i

to neighbor Pj , where k = π
(r)
i (j).

6: else
7: Denote by e(r)

k→i the ciphertext Pi received from Pk, where k = π
(r)
i (j). Party Pi sends e(r−1)

i→j =

DelLayer
(

e(r)
k→i, sk(r)

i→k

)
to neighbor Pj .

8: end if
9: end for

10: If Pi is the recipient Po, then it computes (b, u) = Decrypt(e(1)
1→i, sk(1)

i→1) and outputs (b, u, ui). Otherwise,
it outputs (1, 0, ui).

The actual protocol BC-OB consists of n consecutive runs of the random walk phase protocol
RandomWalkPhase.

Each party Pi keeps bits bouti , uouti and ui, and sets ui = 0.
for o from 1 to n do

Parties jointly execute(
(btmpi , vtmpi , utmpi )Pi∈P

)
= RandomWalkPhase(T, Po, (di, bi, ui)Pi∈P).

Each party Pi sets ui = utmpi .
Party Po sets bouto = btmpo , uouto = vtmpo .

end for
For each party Pi, if uouti = 0 then party Pi outputs bouti .

Protocol BC-OB(T, (di, bi)Pi∈P)

The protocol BC-OB leaks information about the topology of the graph during the execution
of RandomWalkPhase, in which the first crash occurs. (Every execution before the first crash
proceeds almost exactly as the protocol in [ALM17a] and in every execution afterwards all values
are blinded by the unhappy-bit u.) We model the leaked information by a query to the leakage
function LOB. The function outputs only one bit and, since the functionality FLinfo allows for
only one query to the leakage function, the protocol leaks overall one bit of information.

The inputs passed to LOB are: the graph G and the set C of crashed parties, passed to the
function by FLinfo, and a triple (F, Ps, T′), passed by the simulator. The idea is that the simulator
needs to know whether the walk carrying the output succeeded or not, and this depends on the
graph G. More precisely, the set F contains a list of pairs (Pf , r), where r is the number of
rounds in the execution of RandomWalkPhase, at which Pf crashed. LOB tells the simulator
whether any of the crashes in F disconnected a freshly generated random walk of length T′,
starting at given party Ps.

if for any (Pf , r) ∈ F , Pf 6∈ C then Return 0.
else

Generate in G a random walk of length T′ starting at Ps.

Function LOB((F, Ps, T′), C, G)

9



Return 1 if for any (Pf , r) ∈ F removing party Pf after r rounds disconnects the walk and 0 otherwise.
end if

We prove the following theorem in Section A.1.

Theorem 2. For κ security parameter and T = 8n3(log(n)+κ) protocol BC-OB(T, (di, bi)Pi∈P))
topology-hidingly realizes FLOBinfo ||FBC (with abort) in the Fnet hybrid-world, where the leakage
function LOB is the one defined as above. If no crashes occur, then there is no abort and there
is no leakage.

3.2 Protocol Leaking a Fraction of a Bit

We now show how to go from BC-OB to the actual broadcast protocol BC-FBp which leaks only
a fraction p of a bit. The leakage parameter p can be arbitrarily small. However, the complexity
of the protocol is proportional to 1/p. As a consequence, 1/p must be polynomial and p cannot
be negligible.

The idea is to leverage the fact that the adversary can gain information in only one execution
of RandomWalkPhase. Imagine that RandomWalkPhase succeeds only with a small probability
p, and otherwise the output bit b is 1. Moreover, assume that during RandomWalkPhase the
adversary does not learn whether it will fail until it can decrypt the output.

We can now, for each phase, repeat RandomWalkPhase ρ times, so that with overwhelming
probability one of the repetitions does not fail. A party Po can then compute its output as the
AND of outputs from all repetitions (or abort if any repetition aborted). On the other hand,
the adversary can choose only one execution of RandomWalkPhase, in which it learns one bit of
information (all subsequent repetitions will abort). Moreover, it must choose it before it knows
whether the execution succeeds. Hence, the adversary learns one bit of information only with
probability p.

What is left is to modify RandomWalkPhase, so that it succeeds only with probability p, and
so that the adversary does not know whether it will succeed. We only change the Aggregate
Stage. Instead of an encrypted tuple [b, u], the parties send along the walk b1/pc+ 1 encrypted
bits [b1, . . . , bb1/pc, u], where u again is the OR of the unhappy-bits, and every bk is a copy the
bit b in RandomWalkPhase, with some caveats. For each phase o, and for every party Pi 6= Po,
all bk are copies of b in the walk and they all contain 1. For Po, only one of the bits, bk, contains
the OR, while the rest is initially set to 1.

During the Aggregate Stage, the parties process every ciphertext corresponding to a bit bk
the same way they processed the encryption of b in the
RandomWalkPhase. Then, before sending the ciphertexts to the next party on the walk, the
encryptions of the bits bk are randomly shuffled. (This way, as long as the walk traverses an
honest party, the adversary does not know which of the ciphertexts contain dummy values.) At
the end of the Aggregate Stage (after T rounds), the last party chooses uniformly at random
one of the b1/pc ciphertexts and uses it, together with the encryption of the unhappy-bit, to
execute the Decrypt Stage as in RandomWalkPhase.

The information leaked by BC-FBp is modeled by the following function LFBp .

Let p′ = 1/b1/pc. With probability p′, return LOB((F, Ps, T′), C, G) and with probability 1− p′ return ⊥.

Function LFBp ((F, Ps, T′), C, G)

A formal description of the modified protocol ProbabilisticRandomWalkPhasep and a proof
of the following theorem can be found in Section A.2.

Theorem 3. Let κ be the security parameter. For τ = log(n) + κ, T = 8n3τ , and ρ =
τ/(p′ − 2−τ ), where p′ = 1/b1/pc, protocol BC-FBp(T, ρ, (di, bi)Pi∈P)) topology-hidingly realizes
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FLFBpinfo ||FBC (with abort) in the Fnet hybrid-world, where the leakage function LFBp is the one
defined as above. If no crashes occur, then there is no abort and there is no leakage.

4 From Broadcast to Topology-Hiding Computation

We showed how to get topology-hiding broadcasts. To get additional functionality (e.g. for
compiling MPC protocols), we have to be able to compose these broadcasts. When there is no
leakage, this is straightforward: we can run as many broadcasts in parallel or in sequence as
we want and they will not affect each other. However, if we consider a broadcast secure in the
fail-stop model that leaks at most 1 bit, composing t of these broadcasts could lead to leaking
t bits.

The first step towards implementing any functionality in a topology-hiding way is to modify
our broadcast protocol to a topology-hiding all-to-all multibit broadcast, without aggregating
leakage. Then, we show how to sequentially compose such broadcasts, again without adding
leakage. Finally, one can use standard techniques to compile MPC protocols from broadcast.
In the following, we give a high level overview of each step. A detailed description of the
transformations can be found in Section B.

All-to-all Multibit Broadcast. The first observation is that a modification of BC-FBp allows
one party to broadcast multiple bits. Instead of sending a single bit b during the random-walk
protocol, each party sends a vector ~b of bits encrypted separately under the same key. That is,
in each round of the Aggregate Phase, each party sends a vector [~b1, . . . , ~b`, u].

We can extend this protocol to all-to-all multibit broadcast, where each party Pi broadcasts
a message (b1, . . . , bk), as follows. Each of the vectors ~bi in [~b1, . . . , ~b`, u] contains nk bits, and Pi
uses the bits from n(i− 1) to ni to communicate its message. That is, in the Aggregate Stage,
every Pi homomorphically OR’s ~bi = (0, . . . , 0, b1, . . . , bk, 0, . . . , 0) with the received encrypted
vectors.

Sequential execution. All-to-all broadcasts can be composed sequentially by preserving the
state of unhappy bits between sequential executions. That is, once some party sees a crash, it
will cause all subsequent executions to abort.

Topology-Hiding computation. With the above statements, we conclude that any MPC
protocol can be compiled into one that leaks only a fraction p of a bit in total. This is achieved
using a public key infrastructure, where in the first round the parties use the topology hiding
all-to-all broadcast to send each public key to every other party, and then each round of the
MPC protocol is simulated with an all-to-all multibit topology-hiding broadcast. As a corollary,
any functionality F can be implemented by a topology-hiding protocol leaking any fraction p
of a bit.

5 Efficient Topology-Hiding Computation with FHE

One thing to note is that compiling MPC from broadcast is rather expensive, especially in
the fail-stop model; we need a broadcast for every round. However, we will show that an FHE
scheme with additive overhead can be used to evaluate any polynomial-time function f in a
topology-hiding manner. Additive overhead applies to ciphertext versus plaintext sizes and to
error with respect to all homomorphic operations if necessary. We will employ an altered random
walk protocol, and the total number of rounds in this protocol will amount to that of a single
broadcast. We remark that FHE with additive overhead can be obtained from subexponential
iO and subexponentially secure OWFs (probabilistic iO), as shown in [CLTV15].
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5.1 Deeply-Fully-Homomorphic Public-Key Encryption

In the altered random walk protocol, the PKCR scheme is replaced by a deeply-fully-homo-
morphic PKE scheme (DFH-PKE). Similarly to PKCR, a DFH-PKE scheme is a public-key
encryption scheme enhanced by algorithms for adding and deleting layers. However, we do
not require that public keys form a group, and we allow the ciphertexts and public keys on
different levels (that is, for which a layer has been added a different number of times) to be
distinguishable. Moreover, DFH-PKE offers full homomorphism.

This is captured by three additional algorithms: AddLayerr, DelLayerr, and HomOpr, operat-
ing on ciphertexts with r layers of encryption (we will call such ciphertexts level-r ciphertexts).
A level-r ciphertext is encrypted under a level-r public key (each level can have different key
space).

Adding a layer requires a new secret key sk. The algorithm AddLayerr takes as input a
vector of level-r ciphertexts J~mKpk encrypted under a level-r public key, the corresponding
level-r public key pk, and a new secret key sk. It outputs a vector of level-(r + 1) ciphertexts
and the level-(r+ 1) public key, under which it is encrypted. Deleting a layer is the opposite of
adding a layer.

With HomOpr, one can compute any function on a vector of encrypted messages. It takes
a vector of level-r ciphertexts encrypted under a level-r public key, the corresponding level-r
public key pk and a function from a permitted set F of functions. It outputs a level-r ciphertext
that contains the output of the function applied to the encrypted messages.

Intuitively, a DFH-PKE scheme is secure if one can simulate any level-r ciphertext without
knowing the history of adding and deleting layers. This is captured by the existence of an
algorithm Leveled-Encryptr, which takes as input a plain message and a level-r public key,
and outputs a level-r ciphertext. We require that for any level-r encryption of a message ~m, the
output of AddLayerr on that ciphertext is indistinguishable from the output of Leveled-Encryptr+1
on ~m and a (possibly different) level-(r + 1) public key. An analogous property is required for
DelLayerr. We will also require that the output of HomOpr is indistinguishable from a level-r
encryption of the output of the functions applied to the messages. We refer to Section C for a
formal definition of a DFH-PKE scheme and to Section C.1 for an instantiation from FHE.

Remark. If we relax DFH-PKE and only require homomorphic evaluation of OR, then this
relaxation is implied by any OR-homomorphic PKCR scheme (in PKCR, additionally, all levels
of key and ciphertext spaces are the same, and the public key space forms a group). Such OR-
homomorphic DFH-PKE would be sufficient to prove the security of the protocols BC-OB and
BC-FBp. However, for simplicity and clarity, we decided to describe our protocols BC-OB and
BC-FBp from a OR-homomorphic PKCR scheme.

5.2 Topology-Hiding Computation from DFH-PKE

To evaluate any function f , we modify the topology-hiding broadcast protocol (with PKCR
replaced by DFH-PKE) in the following way. During the Aggregate Stage, instead of one bit
for the OR of all inputs, the parties send a vector of encrypted inputs. At each round, each
party homomorphically adds its input together with its id to the vector. The last party on the
walk homomorphically evaluates f on the encrypted inputs, and (homomorphically) selects the
output of the party who receives it in the current phase. The Decrypt Stage is started with this
encrypted result.

Note that we still need a way to make a random walk dummy (this was achieved in BC-OB
and BC-FBp by starting it with a 1). Here, we will have an additional input bit for the party who
starts a walk. In case this bit is set, when homomorphically evaluating f , we (homomorphically)
replace the output of f by a special symbol. We refer to Section D for a detailed description of
the protocol and a proof of the following theorem.
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Theorem 4. For security parameter κ, τ = log(n) + κ, T = 8n3τ , and ρ = τ/(p′ − 2−τ ),
where p′ = 1/b1/pc, the protocol DFH-THC(T, ρ, (di, inputi)Pi∈P)) topology-hidingly evaluates
any poly-time function f , FLFBpinfo ||f in the Fnet hybrid-world.

6 Security Against Semi-malicious Adversaries

In this section, we show how to generically compile our protocols to provide in addition security
against a semi-malicious adversary. The transformed protocol proceeds in two phases: Random-
ness Generation and Deterministic Execution. In the first phase, we generate the random tapes
for all parties and in the second phase we execute the given protocol with parties using the
pre-generated random tapes. The tapes are generated in such a way that the tape of each party
Pi is the sum of random values generated from each party. Hence, as long as one party is honest,
the generated tape is random.

Randomness Generation. The goal of the first phase is to generate for each party Pi a
uniform random value ri, which can then be used as randomness tape of Pi in the phase of
Deterministic Execution.6

1: Each party Pi generates n+ 1 uniform random values s(0)
i , s

(1)
i , . . . , s

(n)
i and sets r(0)

i := s
(0)
i .

2: for any round r from 1 to n do
3: Each party Pi sends r(r−1)

i to all its neighbors.
4: Each party Pi computes r(r)

i as the sum of all values received from its (non-crashed) neighbors in the
current round and the value s(k)

i .
5: end for
6: Each party Pi outputs ri := r

(n)
i .

Protocol GenerateRandomness

Lemma 2. Let G′ be the network graph without the parties which crashed during the execution
of GenerateRandomness. Any party Pi whose connected component in G′ contains at least one
honest party will output a uniform value ri. The output of any honest party is not known to the
adversary. The protocol GenerateRandomness does not leak any information about the network-
graph (even if crashes occur).

Proof. First observe that all randomness is chosen at the beginning of the first round. The rest
of the protocol is completely deterministic. This implies that the adversary has to choose the
randomness of corrupted parties independently of the randomness chosen by honest parties.

If party Pi at the end of the protocol execution is in a connected component with honest
party Pj , the output ri is a sum which contains at least one of the values s(r)

j from Pj . That
summand is independent of the rest of the summands and uniform random. Thus, ri is uniform
random as well.

Any honest party will (in the last round) compute its output as a sum which contains a
locally generated truly random value, which is not known to the adversary. Thus, the output is
also not known to the adversary.

Finally, observe that the message pattern seen by a party is determined by its neighborhood.
Moreover, the messages received by corrupted parties from honest parties are uniform random
values. This implies, that the view of the adversary in this protocol can be easily simulated
given the neighborhood of corrupted parties. Thus, the protocol does not leak any information
about the network topology. ut

6 To improve overall communication complexity of the protocol the values generated in the first phase could be
used as local seeds for a PRG which is then used to generate the actual random tapes.
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Transformation to Semi-malicious Security. In the second phase of Deterministic Exe-
cution, the parties execute the protocol secure against passive and fail-stop corruptions, but
instead of generating fresh randomness during the protocol execution, they use the random
tape generated in the first phase.

1: The parties execute GenerateRandomness to generate random tapes.
2: If a party witnessed a crash in GenerateRandomness, it pretends that it witnessed this crash in the first

round of the protocol Π.
3: The parties execute Π, using the generated randomness tapes, instead of generating randomness on the

fly.

Protocol EnhanceProtocol(Π)

Theorem 5. Let F be an MPC functionality and let Π be a protocol that topology-hidingly
realizes F in the presence of static passive corruptions and adaptive crashes. Then, the pro-
tocol EnhanceProtocol(Π) topology-hidingly realizes F in the presence of static semi-malicious
corruption and adaptive crashes. The leakage stays the same.

Proof. (sketch) The randomness generation protocol GenerateRandomness used in the first phase
is secure against a semi-malicious fail-stopping adversary. Lemma 2 implies that the random
tape of any semi-malicious party that can interact with honest parties is truly uniform random.
Moreover, the adversary has no information on the random tapes of honest parties. This implies
that the capability of the adversary in the execution of the actual protocol in the second phase
(which for fixed random tapes is deterministic) is the same as for an semi-honest fail-stopping
adversary. This implies that the leakage of EnhanceProtocol(Π) is the same as for Π as the
randomness generation protocol does not leak information (even if crashes occur). ut

As a corollary of Theorems 3 and 5, we obtain that any MPC functionality can be real-
ized in a topology-hiding manner secure against an adversary that does any number of static
semi-malicious corruptions and adaptive crashes, leaking at most an arbitrary small fraction of
information about the topology.

7 LWE based OR-Homomorphic PKCR Encryption

In this section, we show how to get PKCR encryption from the LWE. The basis of our PKCR
scheme is the public-key crypto-system proposed in [Reg09].

LWE PKE scheme [Reg09] Let κ be the security parameter of the cryptosystem. The cryp-
tosystem is parameterized by two integers m, q and a probability distribution χ on Zq. To
guarantee security and correctness of the encryption scheme, one can choose q ≥ 2 to be some
prime number between κ2 and 2κ2, and let m = (1 + ε)(κ + 1) log q for some arbitrary con-
stant ε > 0. The distribution χ is a discrete gaussian distribution with standard deviation
α(κ) := 1√

κlog2κ
.

Key Generation: Setup: For i = 1, . . . ,m, choose m vectors a1, . . . ,am ∈ Zκq independently
from the uniform distribution. Let us denote A ∈ Zm×κq the matrix that contains the vectors
ai as rows.
Secret Key: Choose s ∈ Zκq uniformly at random. The secret key is sk = s.
Public Key: Choose the error coefficients e1, . . . , em ∈ Zq independently according to χ. The
public key is given by the vectors bi = 〈ai, sk〉+ ei. In matrix notation, pk = A · sk + e.

Encryption: To encrypt a bit b, we choose uniformly at random x ∈ {0, 1}m. The ciphertext
is c = (xᵀA,xᵀpk + b q2).

Decryption: Given a ciphertext c = (c1, c2), the decryption of c is 0 if c2 − c1 · sk is closer to
0 than to b q2c modulo q. Otherwise, the decryption is 1.
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Extension to PKCR We now extend the above PKE scheme to satisfy the requirements of a
PKCR scheme. For this, we show how to rerandomize ciphertexts, how add and remove layers of
encryption, and finally how to homomorphically compute XOR. We remark that it is enough to
provide XOR-Homomorphic PKCR encryption scheme to achieve an OR-Homomorphic PKCR
encryption scheme, as was shown in [ALM17a]

Rerandomization: We note that a ciphertext can be rerandomized, which is done by homo-
morphically adding an encryption of 0. The algorithm Rand takes as input a cipertext and
the corresponding public key, as well as a (random) vector x ∈ {0, 1}m.

return (c1 + xᵀA, c2 + xᵀpk).

Algorithm Rand(c = (c1, c2), pk,x)

Adding and Deleting Layers of Encryption: Given an encryption of a bit b under the pub-
lic key pk = A · sk + e, and a secret key sk′ with corresponding public key pk′ = A · sk′+ e′,
one can add a layer of encryption, i.e. obtain a ciphertext under the public key pk · pk′ :=
A · (sk + sk′) + e + e′. Also, one can delete a layer of encryption.

return (c1, c1 · sk + c2)

Algorithm AddLayer(c = (c1, c2), sk)

return (c1, c2 − c1 · sk)

Algorithm DelLayer(c = (c1, c2), sk)

Error Analysis Every time we add a layer, the error increases. Hence, we need to ensure
that the error does not increase too much. After l steps, the error in the public key is
pk0...l =

∑l
i=0 ei, where ei is the error added in each step.

The error in the ciphertext is c0...l =
∑l
i=0 xi

∑i
j=0 ej , where the xi is the chosen ran-

domness in each step. Since xi ∈ {0, 1}m, the error in the ciphertext can be bounded by
m ·maxi{

∣∣ei∣∣∞} · l2, which is quadratic in the number of steps.
Homomorphic XOR: A PKCR encryption scheme requires a slightly stronger version of ho-

momorphism. In particular, homomorphic operation includes the rerandomization of the
ciphertexts. Hence, the algorithm hXor also calls Rand. The inputs to hXor are two cipher-
texts encrypted under the same public key and the corresponding public key.

Set c′′ = (c1 + c′1, c2 + c′2).
Choose x ∈ {0, 1}m uniformly at random.
return Rand(c′′, pk,x)

Algorithm hXor(c = (c1, c2), c′ = (c′1, c′2), pk)
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Appendix

A Topology-Hiding Broadcast

This section contains supplementary material for Section 3.

A.1 Protocol Leaking One Bit

In this section we prove Theorem 2 from Section 3.1.

Theorem 2. For κ security parameter and T = 8n3(log(n)+κ) protocol BC-OB(T, (di, bi)Pi∈P))
topology-hidingly realizes FLOBinfo ||FBC (with abort) in the Fnet hybrid-world, where the leakage
function LOB is the one defined as above. If no crashes occur, then there is no abort and there
is no leakage.

Proof. Completeness. We first show that the protocol is complete. To this end, we need to
ensure that the probability that all parties get the correct output is overwhelming in κ. That
is, the probability that all non-dummy random walks (of length T = 8n3(log(n) + κ)) reach all
nodes is overwhelming.

By Lemma 1, a walk of length 8n3τ does not reach all nodes with probability at most 1
2τ .

Then, using the union bound, we obtain that the probability that there is a party whose walk
does not reach all nodes is at most n

2τ . Hence, all n walks (one for each party) reach all nodes
with probability at least 1− n

2τ . If we want this value to be overwhelming, e.g. 1− 1
2κ , we can

set τ := κ+ log(n).
Soundness. We now need to show that no environment can distinguish between the real world
and the simulated world, when given access to the adversarially-corrupted parties. We first
describe on a high level the simulator SOB and argue that it simulates the real execution.

In essence, the task of SOB is to simulate the messages sent by honest parties to passively
corrupted parties. Consider a corrupted party Pc and its honest neighbor Ph. The messages
sent from Ph to Pc during the Aggregate Stage are ciphertexts, to which Ph added a layer,
and corresponding public keys. Since Ph is honest, the adversary does not know the secret keys
corresponding to the sent public keys. Hence, SOB can simply replace them with encryptions
of a pair (1, 1) under a freshly generated public key. The group structure of keys in PKCR
guarantees that a fresh key has the same distribution as the composed key (after executing
AddLayer). Semantic security implies that the encrypted message can be replaced by (1, 1).

Consider now the Decrypt Stage at round r. Let pk(r)
c→h be the public key sent by Pc to Ph

in the Aggregate Stage (note that this is not the key discussed above; there we argued about
keys sent in the opposite direction). SOB will send to Pc a fresh encryption under pk(r)

c→h. We
now specify what it encrypts.

Note that the only interesting case is when the party Po receiving output is corrupted and
when we are in the round r in which the (only one) random walk carrying the output enters an
area of corrupted parties, containing Po (that is, when the walk with output contains from Ph
all the way to Po only corrupted parties). In this one message in round r the adversary learns
the output of Po. All other messages are simply encryptions of (1, 1).

For this one meaningful message, we consider three cases. If any party crashed in a phase
preceding the current one, SOB sends an encryption of (1, 1) (as in the real world the walk is
made dummy by an unhappy party). If no crashes occurred up to this point (round r in given
phase), SOB encrypts the output received from FBC. If a crash happened in the given phase,
SOB queries the leakage oracle LOB, which essentially executes the protocol and tells whether
the output or (1, 1) should be sent.
Simulator. Below, we present the pseudocode of the simulator. The essential part of it is the
algorithm PhaseSimulation, which is also illustrated in Figure 1.

17



1. SOB corrupts passively Zp.
2. SOB sends inputs for all parties in Zp to FBC and receives the output bit bout.
3. For each Pi ∈ Zp, SOB receives NG(Pi) from FLinfo.
4. Throughout the simulation, if A crashes a party Pf , so does SOB .
5. Now SOB has to simulate the view of all parties in Zp.

In every phase in which Po should get the output, first of all the Initialization Stage is executed among
the parties in Zp and the T key pairs are generated for every Pi ∈ Zp. Moreover, for every Pi ∈ Zp the
permutations π(r)

i are generated, defining those parts of all random walks, which pass through parties in
Zp.
The messages sent by parties in Zp are generated by executing the protocol RandomWalkPhase. The
messages sent by correct parties Pi 6∈ Zp are generated by executing PhaseSimulation(Po, Pi), described
below.

6. SOB sends to FBC the abort vector (in particular, the vector contains all parties Po who should receive their
outputs in phases following the first crash and, depending on the output of LOB , the party who should
receive its output in the phase with first crash).

Simulator SOB

If Po ∈ Zp, let w denote the random walk generated in the Initialization Stage (at the beginning of the
simulation of this phase), which starts at Po and carries the output bit. Let ` denote the number of parties in
Zp on w before the first correct party. If Po 6∈ Zp, w and ` are not defined.

For every Pj ∈ Zp ∩NG(Pi), let pk(r)
j→i denote the public key generated in the Initialization Stage by Pj

for Pi and for round r.
Initialization Stage

1: For every neighbor Pj ∈ Zp of the correct Pi, SOB generates T key pairs (pk(1)
i→j , sk(1)

i→j), . . . , (pk(T)
i→j , sk(T)

i→j).
Aggregate Stage

1: In round r, for every neighbor Pj ∈ NG(Pi) ∩ Zp, SOB sends ([1, 1]
pk(r)

i→j

, pk(r)
i→j) to Pj .

Decrypt Stage

1: if A crashed any party in any phase before the current one or Po 6∈ Zp then
2: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SOB sends [1, 1]

pk(r)
j→i

to Pj .
3: else
4: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SOB sends [1, 1]

pk(r)
j→i

to Pj unless the

following three conditions hold: (a) Pi is the first party not in Zp on w, (b) Pj is the last party in Zp
on w, and (c) r = 2T− `.

5: If the three conditions hold (in particular r = 2T− `), SOB does the following. If A did not crash any
party in a previous round, SOB sends [bout, 0]

pk(r)
j→i

to party Pj .

6: Otherwise, let F denote the set of pairs (Pf , s − ` + 1) such that A crashed Pf in round s. SOB
queries FLOB

info for the leakage on input (F, Pi, T− `). If the returned value is 1, it sends [1, 1]
pk(r)

j→i

to

Pj . Otherwise it sends [bout, 0]
pk(r)

j→i

to party Pj .
7: end if

Algorithm PhaseSimulation(Po, Pi)

We prove that no environment can tell whether it is interacting with Fnet and the adversary
in the real world or with FLinfo and the simulator in the ideal world.

Hybrids and security proof.

Hybrid 1. S1 simulates the real world exactly. This means, S has information on the entire
topology of the graph, each party’s input, and can simulate identically the real world.

Hybrid 2. S2 replaces the real keys with the simulated public keys, but still knows everything
about the graph as in the first hybrid.
More formally, in each random walk phase and for each party Pi ∈ P \ Zp where NG(Pi) ∩
Zp 6= ∅, S2 generates T key pairs (pk(1)

i→j , sk(1)
i→j), . . . , (pk(T)

i→j , sk(T)
i→j) for every neighbor

Pj ∈ NG(Pi) ∩ Zp. In each round r of the corresponding Aggregate Stage and for every

18



Pi

Pj

Po

Fig. 1. An example of the algorithm executed by the simulator SOB . The filled circles are the corrupted parties.
The red line represents the random walk generated by SOB in Step 5, in this case of length ` = 3. SOB simulates
the Decrypt Stage by sending fresh encryptions of (1, 1) at every round from every honest party to each of its
corrupted neighbors, except in round 2T − 3 from Pi to Pj . If no crash occurred up to that point, SOB sends
encryption of (bout, 0). Otherwise, it queries the leakage oracle about the walk of length T− 3, starting at Pi.

neighbor Pj ∈ NG(Pi)∩Zp, S2 does the following. Pi receives ciphertext [b, u]
pk(r)
∗→i

and the

public key pk(r)
∗→i destined for Pj . Instead of adding a layer and homomorphically OR’ing the

bit bi, S2 computes (b′, u′) = (b∨ bi ∨ui, u∨ui), and sends [b′, u′]
pk(r)
i→j

to Pj . In other words,
it sends the same message as S1 but encrypted with a fresh public key. In the corresponding
Decrypt Stage, Pi will get back a ciphertext from Pj encrypted under this exact fresh public
key.

Hybrid 3. S3 now simulates the ideal functionality during the Aggregate Stage. It does so by
sending encryptions of (1, 1) instead of the actual messages and unhappy bits. More formally,
in each round r of the Aggregate Stage and for all parties Pi ∈ P \Zp and Pj ∈ NG(Pi)∩Zp,
S3 sends [1, 1]

pk(r)
i→j

instead of the ciphertext [b, u]
pk(r)
i→j

sent by S2.
Hybrid 4. S4 does the same as SOB during the Decrypt Stage for all steps except for round

2T−` of the first random walk phase in which the adversary crashes a party. This corresponds
to the original description of the simulator except for the ’Otherwise’ condition of Step 6 in
the Decrypt Stage.

Hybrid 5. S5 is the actual simulator SOB.

In order to prove that no environment can distinguish between the real world and the ideal
world, we prove that no environment can distinguish between any two consecutive hybrids when
given access to the adversarially-corrupted nodes.

Claim 1. No efficient distinguisher D can distinguish between Hybrid 1 and Hybrid 2.

Proof: The two hybrids only differ in the computation of the public keys that are used to encrypt
messages in the Aggregate Stage from any honest party Pi ∈ P \ Zp to any dishonest neighbor
Pj ∈ NG(Pi) ∩ Zp.

In Hybrid 1, party Pi sends to Pj an encryption under a fresh public key in the first round. In
the following rounds, the encryption is sent either under a product key pk(r)

i→j = pk(r−1)
k→i ~pk(r)

i→j

or under a fresh public key (if Pi is unhappy). Note that pk(r−1)
k→i is the key Pi received from a

neighbor Pk in the previous round.
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In Hybrid 2, party Pi sends to Pj an encryption under a fresh public key pk(r)
i→j in every

round.
The distribution of the product key used in Hybrid 1 is the same as the distribution of a

freshly generated public-key. This is due to the (fresh) pk(r)
i→j key which randomizes the product

key. Therefore, no distinguisher can distinguish between Hybrid 1 and Hybrid 2. �

Claim 2. No efficient distinguisher D can distinguish between Hybrid 2 and Hybrid 3.

Proof: The two hybrids differ only in the content of the encrypted messages that are sent in the
Aggregate Stage from any honest party Pi ∈ P\Zp to any dishonest neighbor Pj ∈ NG(Pi)∩Zp.

In Hybrid 2, party Pi sends to Pj in the first round an encryption of (bi ∨ ui, ui). In the
following rounds, Pi sends to Pj either an encryption of (b ∨ bi ∨ ui, u ∨ ui), if message (b, u) is
received from neighbor π−1

i (j), or an encryption of (1, 1) if no message is received.
In Hybrid 3, all encryptions that are sent from party Pi to party Pj are replaced by encryp-

tions of (1, 1).
Since the simulator chooses a key independent of any key chosen by parties in Zp in each

round, the key is unknown to the adversary. Hence, the semantic security of the encryption
scheme guarantees that the distinguisher cannot distinguish between both encryptions. �

Claim 3. No efficient distinguisher D can distinguish between Hybrid 3 and Hybrid 4.

Proof: The only difference between the two hybrids is in the Decrypt Stage. We differentiate
two cases:

– A phase where the adversary did not crash any party in this or any previous phase. In this
case, the simulator S3 sends an encryption of (bW , uW ), where bW =

∨
Pj∈W bj is the OR of

all input bits in the walk and uW = 0, since no crash occurred. S4 sends an encryption of
(bout, 0), where bout =

∨
Pi∈P bi. Since the graph is connected, bout = bW with overwhelming

probability, as proven in Corollary 1. Also, the encryption in Hybrid 4 is done with a fresh
public key which is indistinguishable with the encryption done in Hybrid 3 by OR’ing many
times in the graph, as shown in Claim 2.1 in [ALM17a].

– A phase where the adversary crashed a party in a previous phase or any round different than
2T − ` of the first phase where the adversary crashes a party. In Hybrid 4 the parties send
an encryption of (1, 1). This is also the case in Hybrid 3, because even if a crashed party
disconnected the graph, each connected component contains a neighbor of a crashed party.
Moreover, in Hybrid 4, the messages are encrypted with a fresh public key, and in Hybrid
3, the encryptions are obtained by the homomorphic OR operation. Both encryptions are
indistinguishable, as shown in in Claim 2.1 in [ALM17a].

�

Claim 4. No efficient distinguisher D can distinguish between Hybrid 4 and Hybrid 5.

Proof: The only difference between the two hybrids is in the Decrypt Stage, at round 2T− ` of
the first phase where the adversary crashes.

Let F be the set of pairs (Pf , r) such that A crashed Pf at round r of the phase. In Hybrid 4,
a walk W of length T is generated from party Po. Let W1 be the region of W from Po to the first
not passively corrupted party and let W2 be the rest of the walk. Then, the adversary’s view
at this step is the encryption of (1, 1) if one of the crashed parties breaks W2, and otherwise an
encryption of (bW , 0). In both cases, the message is encrypted under a public key for which the
adversary knows the secret key.

In Hybrid 5, a walk W ′1 is generated from Po of length ` ≤ T ending at the first not passively
corrupted party Pi. Then, the simulator queries the leakage function on input (F, Pi, T − `),
which generates a walk W ′2 of length T − ` from Pi, and checks whether W ′2 is broken by any
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party in F . If W ′2 is broken, Pi sends an encryption of (1, 1), and otherwise an encryption of
(bW , 0). Since the walk W ′ defined as W ′1 followed by W ′2 follows the same distribution as W ,
bW = bout with overwhelming probability, and the encryption with a fresh public key which
is indistinguishable with the encryption done by OR’ing many times in the graph, then it is
impossible to distinguish between Hybrid 4 and Hybrid 5.

�
This concludes the proof of soundness. ut

A.2 Protocol Leaking a Fraction of a Bit

In this section, we give a formal description of ProbabilisticRandomWalkPhasep which is the
random-walk phase protocol for the broadcast protocol BC-FBp, from Section 3.2. Note that this
protocol should be repeated ρ times in the actual protocol. The boxes indicate the parts where
it differs from the random-walk phase protocol RandomWalkPhase for the broadcast protocol
leaking one bit (cf. Section 3.1).

Initialization Stage:

1: Each party Pi generates T · di keypairs (pk(r)
i→j , sk(r)

i→j) � KeyGen(1κ) where r ∈ {1, . . . , T} and j ∈
{1, . . . , di}.

2: Each party Pi generates T− 1 random permutations on di elements
{
π

(2)
i , . . . , π

(T)
i

}
3: For each party Pi, if any of Pi’s neighbors crashed in any phase before the current one, then Pi becomes

unhappy, i.e., sets ui = 1.
Aggregate Stage: Each party Pi does the following:

1: if Pi is the recipient Po then
2: Party Pi sends to the first neighbor the public key pk(1)

i→1 and the ciphertext [bi ∨ ui, 1, . . . , 1, ui]pk(1)
i→1

(b1/pc − 1 ciphertexts contain 1), and to any other neighbor Pj it sends [1, . . . , 1, 1]
pk(1)

i→j

and the

public key pk(1)
i→j .

3: else
4: Party Pi sends to each neighbor Pj ciphertext [1, . . . , 1, 1]

pk(1)
i→j

and the public key pk(1)
i→j .

5: end if
6: // Add layer while ORing own input bit
7: for any round r from 2 to T do
8: For each neighbor Pj of Pi, do the following (let k = π

(r)
i (j)):

9: if Pi did not receive a message from Pj then
10: Party Pi sends [1, . . . , 1, 1]

pk(r)
i→k

and pk(r)
i→k to neighbor Pk.

11: else
12: Let c(r−1)

j→i and pk(r−1)
j→i be the ciphertext and the public key Pi received from Pj . Party Pi computes

pk(r)
i→k = pk(r−1)

j→i ~ pk(r)
i→k and

ĉ(r)
i→k ← AddLayer

(
c(r−1)
j→i , pk(r)

i→k

)
.

13: Party Pi computes [bi ∨ ui, . . . , bi ∨ ui, ui]pk(r)
i→k

and

c(r)
i→k = HomOR

(
[bi ∨ ui, . . . , bi ∨ ui, ui]pk(r)

i→k

, ĉ(r)
i→k

)
.

14: Party Pi sends ciphertext c(r)
i→k and public key pk(r)

i→k to neighbor Pk.
15: end if
16: end for
Decrypt Stage: Each party Pi does the following:

1: For each neighbor Pj of Pi:
2: if Pi did not receive a message from Pj at round T of the Aggregate Stage then

Protocol ProbabilisticRandomWalkPhasep(T, Po, (di, bi, ui)Pi∈P)
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3: Party Pi sends ciphertext e(T)
i→j = [1, 1]

pk(T)
j→i

to Pj .
4: else
5: Party Pi chooses uniformly at random one of the first b1/pc ciphertexts in c(T)

j→i. Let c̄(T)
j→i denote the

tuple containing the chosen ciphertext and the last element of c(T)
j→i (the encryption of the unhappy

bit). Party Pi computes and sends e(T)
i→j = HomOR

(
[bi ∨ ui, ui]pk(T)

j→i

, c̄(T)
j→i

)
to Pj .

6: end if
7: for any round r from T to 2 do
8: For each neighbor Pk of Pi:
9: if Pi did not receive a message from Pk then

10: Party Pi sends e(r−1)
i→j = [1, 1]

pk(r−1)
j→i

to neighbor Pj , where k = π
(r)
i (j).

11: else
12: Denote by e(r)

k→i the ciphertext Pi received from Pk, where k = π
(r)
i (j). Party Pi sends e(r−1)

i→j =

DelLayer
(

e(r)
k→i, sk(r)

i→k

)
to neighbor Pj .

13: end if
14: end for
15: If Pi is the recipient Po, then it computes (b, u) = Decrypt(e(1)

1→i, sk(1)
i→1) and outputs (b, u, ui). Otherwise,

it outputs (1, 0, ui).

Security Proof of the Protocol Leaking a Fraction of a Bit.
In this section we prove Theorem 3 from Section 3.2.

Theorem 3. Let κ be the security parameter. For τ = log(n) + κ, T = 8n3τ and ρ = τ/(p′ −
2−τ ), where p′ = 1/b1/pc, the protocol BC-FBp(T, ρ, (di, bi)Pi∈P)) topology-hidingly realizes the
functionalities FLFBpinfo ||FBC (with abort) in the Fnet hybrid-world, where the leakage function
LFBp is the one defined as above. If no crashes occur, then there is no abort and there is no
leakage.

Proof. Completeness. We first show that the protocol is complete. That is, that if the adver-
sary does not crash any party, then every party gets the correct output (the OR of all input
bits) with overwhelming probability. More specifically, we show that if no crashes occur, then
after ρ repetitions of a phase, the party Po outputs the correct value with probability at least
1 − 2−(κ+log(n)). The overall completeness follows from the union bound: the probability that
all n parties output the correct value is at least 1− 2−κ.

Notice that if the output of any of the ρ repetitions intended for Po is correct, then the
overall output of Po is correct. A given repetition can only give an incorrect output when either
the random walk does not reach all parties, which happens with probability at most 2−τ , or
when the repetition fails, which happens with probability 1− p′. Hence, the probability that a
repetition gives the incorrect result is at most 1−p′+2−τ . The probability that all repetitions are
incorrect is then at most (1−p′+2−τ )ρ ≤ 2−(κ+log(n)) (the inequality holds for 0 ≤ p′−2−τ ≤ 1).

Soundness. We show that no environment can distinguish between the real world and the
simulated world, when given access to the adversarially-corrupted nodes. The simulator SFB
for BC-FBp is a modification of SOB. Here we only sketch the changes and argue why SFB
simulates the real world.

In each of the ρ repetitions of a phase, SFB executes a protocol very similar to the one for
SOB. In the Aggregate Stage, SFB proceeds almost identically to SOB (except that it sends
encryptions of vectors (1, . . . , 1) instead of only two values). In the Decrypt Stage the only
difference between SFB and SOB is in computing the output for the party Po (as already
discussed in the proof of Theorem 2, SFB does this only when Po is corrupted and the walk
carrying the output enters an area of corrupted parties). In the case when there were no crashes
before or during given repetition of a phase, SOB would simply send the encrypted output.
On the other hand, SFB samples a value from the Bernoulli distribution with parameter p and
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sends the encrypted output only with probability p, while with probability 1 − p it sends the
encryption of (1, 0). Otherwise, the simulation is the same as for SOB.

It can be easily seen that SFB simulates the real world in the Aggregate Stage and in the
Decrypt Stage in every message other than the one encrypting the output. But even this message
comes from the same distribution as the corresponding message sent in the real world. This is
because in the real world, if the walk was not broken by a crash, this message contains the
output with probability p. The simulator encrypts the output also with probability p in the
two possible cases: when there was no crash (SFB samples from the Bernoulli distribution) and
when there was a crash but the walk was not broken (LFB is defined in this way).

Simulator. The simulator SFB proceeds almost identically to the simulator SOB given in
the proof of Theorem 2 (cf. Section A.1). We only change the algorithm PhaseSimulation to
ProbabilisticPhaseSimulation and execute it ρ times instead of only once.

If Po ∈ Zp, let w denote the random walk generated in the Initialization Stage (at the beginning of the
simulation of this phase), which starts at Po and carries the output bit. Let ` denote the number of parties in
Zp on w before the first correct party. If Po 6∈ Zp, w and ` are not defined.

For every Pj ∈ Zp ∩NG(Pi), let pk(r)
j→i denote the public key generated in the Initialization Stage by Pj

for Pi and for round r.
Initialization Stage

1: For every neighbor Pj ∈ Zp of the correct Pi, SFB generates T key pairs (pk(1)
i→j ,sk(1)

i→j),. . . ,(pk(T)
i→j , sk(T)

i→j).
Aggregate Stage

1: In round r, for every neighbor Pj ∈ NG(Pi) ∩ Zp, SFB sends the tuple ([1, . . . , 1]
pk(r)

i→j

, pk(r)
i→j) (with

b1/pc+ 1 ones) to Pj .

Decrypt Stage

1: if Po 6∈ Zp or A crashed any party in any phase before the current one
2: or in any repetition of the current phase then
3: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SFB sends [1, 1]

pk(r)
j→i

to Pj .
4: else
5: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SFB sends [1, 1]

pk(r)
j→i

to Pj unless the

following three conditions hold: (a) Pi is the first party not in Zp on w, (b) Pj is the last party in Zp
on w, and (c) r = 2T− `.

6: If the three conditions hold (in particular r = 2T− `), SFB does the following. If A did not crash any
party in a previous round,

7: SFB samples a value x from the Bernoulli distribution with parameter p′. If x = 1 (with probability
p′), SFB sends to Pj the ciphertext [bout, 0]

pk
(r)
j→i

and otherwise it sends [1, 0]
pk

(r)
j→i

.

8: Otherwise, let F denote the set of pairs (Pf , s − ` + 1) such that A crashed Pf in round s. SFB

queries F
LF Bp
info for the leakage on input (F, Pi, T− `). If the returned value is 1, it sends [1, 1]

pk(r)
j→i

to Pj . Otherwise it sends [bout, 0]
pk(r)

j→i

to party Pj .

9: end if

Algorithm ProbabilisticPhaseSimulation(Po, Pi)

Hybrids and security proof. We consider similar steps as the hybrids from Paragraph A.1.

Hybrid 1. S1 simulates the real world exactly. This means, S1 has information on the entire
topology of the graph, each party’s input, and can simulate identically the real world.

Hybrid 2. S2 replaces the real keys with the simulated public keys, but still knows everything
about the graph as in the first hybrid.
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More formally, in each subphase of each random walk phase and for each party Pi ∈ P \Zp

where NG(Pi) ∩ Zp 6= ∅, S2 generates T key pairs (pk(1)
i→j , sk(1)

i→j), . . . , (pk(T)
i→j , sk(T)

i→j) for
every neighbor Pj ∈ NG(Pi) ∩ Zp. Let α := b1

pc. In each round r of the corresponding
Aggregate Stage and for every neighbor Pj ∈ NG(Pi)∩Zp, S2 does the following: Pi receives
ciphertext [b1, . . . , bα, u]

pk(r)
∗→i

and the public key pk(r)
∗→i destined for Pj . Instead of adding

a layer and homomorphically OR’ing the bit bi, S2 computes (b′1, . . . , b′α, u′) = (b1 ∨ bi ∨
ui, · · · , bα ∨ bi ∨ ui, u ∨ ui), and sends [b′σ(1), · · · , b

′
σ(α), u

′]
pk(r)
i→j

to Pj , where σ is a random
permutation on α elements. In other words, it sends the same message as S1 but encrypted
with a fresh public key. In the corresponding Decrypt Stage, Pi will get back a ciphertext
from Pj encrypted under this exact fresh public key.

Hybrid 3. S3 now simulates the ideal functionality during the Aggregate Stage. It does so by
sending encryptions of (1, . . . , 1) instead of the actual messages and unhappy bits. More
formally, let α := b1

pc. In each round r of a subphase of a random walk phase and for all
parties Pi ∈ P\Zp and Pj ∈ NG(Pi)∩Zp, S3 sends [1, 1, . . . , 1]

pk(r)
i→j

instead of the ciphertext
[b1, . . . , bα, u]

pk(r)
i→j

sent by S2.
Hybrid 4. S4 does the same as SFB during the Decrypt Stage for all phases and subphases

except for the first subphase of a random walk phase in which the adversary crashes a party.
Hybrid 5. S5 is the actual simulator SFB.

The proofs that no efficient distinguisher D can distinguish between Hybrid 1, Hybrid 2 and
Hybrid 3 are similar to the Claim 1 and Claim 2. Hence, we prove indistinguishability between
Hybrid 3, Hybrid 4 and Hybrid 5.

Claim 5. No efficient distinguisher D can distinguish between Hybrid 3 and Hybrid 4.

Proof: The only difference between the two hybrids is in the Decrypt Stage. We differentiate
three cases:

– A subphase l of a phase k where the adversary did not crash any party in this phase,
any previous subphase, or any previous phase. In this case, S3 sends with probability p an
encryption of (bW , uW ), where bW =

∨
u∈W bu is the OR of all input bits in the walk and

uW = 0 (since no crash occurs), and with probability 1− p an encryption of (1, 0). On the
other hand, S4 samples r from a Bernoulli distribution with parameter p, and if r = 1, it
sends an encryption of (bout, 0), where bout =

∨
i∈[n] bi, and if r = 0 it sends an encryption

of (1, 0). Since the graph is connected, bout = bW with overwhelming probability, as proven
in Corollary 1. Also, the encryption in Hybrid 4 is done with a fresh public key which is
indistinguishable with the encryption done in Hybrid 3 by OR’ing many times in the graph,
as shown in Claim 2.1. in [ALM17a].

– A subphase l of a phase k where the adversary crashed a party in a previous subphase or a
previous phase.
In Hybrid 3 the parties send encryptions of (1, 1). This is also the case in Hybrid 4, be-
cause even if a crashed party disconnected the graph, each connected component contains
a neighbor of a crashed party. Moreover, in Hybrid 4, the messages are encrypted with a
fresh public key, and in Hybrid 3, the encryptions are obtained by the homomorphic OR
operation. Both encryptions are indistinguishable, as shown in Claim 2.1. in [ALM17a].

�

Claim 6. No efficient distinguisher D can distinguish between Hybrid 4 and Hybrid 5.

Proof: The only difference between the two hybrids is in the Decrypt Stage of the first subphase
of a phase where the adversary crashes.
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Let F be the set of pairs (Pf , r) such that A crashed Pf at round r of the phase. In Hybrid
4, a walk W of length T is generated from party Po. Let W1 be the region of W from Po to the
first not passively corrupted party and let W2 be the rest of the walk. Then, the adversary’s
view at this step is the encryption of (1, 1) if one of the crashed parties breaks W2 or if the
walk became dummy (which happens with probability 1−p, since the ciphertexts are permuted
randomly and only one ciphertext out of 1

p contains bW ). Otherwise, the adversary’s view is an
encryption of (bW , 0). In both cases, the message is encrypted under a public key for which the
adversary knows the secret key.

In Hybrid 5, a walk W ′1 is generated from Po of length ` ≤ T ending at the first not passively
corrupted party Pi. Then, the simulator queries the leakage function on input (F, Pi, T − `).
Then, with probability p it generates a walk W ′2 of length T − ` from Pi, and checks whether
W ′2 is broken by any party in F . If W ′2 is broken, Pi sends an encryption of (1, 1), and otherwise
an encryption of (bW , 0). Since the walk W ′ defined as W ′1 followed by W ′2 follows the same
distribution as W , bW = bout with overwhelming probability, and the encryption with a fresh
public key which is indistinguishable with the encryption done by OR’ing many times in the
graph, then it is impossible to distinguish between Hybrid 4 and Hybrid 5. �

This concludes the proof of soundness. ut

B From Broadcast to Topology-Hiding Computation

This section contains supplementary material for Section 4.

Naive composition of broadcast. We first argue that composing t broadcasts with one bit
leakage can in general leak t bits.

Given black-box access to a fail-stop secure topology-hiding broadcast with a leakage func-
tion, the naive thing to do to compose broadcasts is run both broadcasts, either in parallel or
sequentially. So, consider composing two broadcasts together, first in parallel. Each protocol is
running independently, and so if there is an abort, the simulator will need to query the leakage
function twice, unless we can make the specific claim that the leakage function will output a
correlated bit for independent instances given the same abort (note that our construction does
not have this property).

If we run the protocols sequentially, we’ll need to make a similar claim. If we are simulating
this composition and there is both an abort in the first broadcast and the second, then we
definitely need to query the leakage function for the first abort. Then, unless we can make
specific claims about how we could start a broadcast protocol after there has already been an
abort, we will need to query the leakage oracle again.

B.1 All-to-all Multibit Broadcast

We show how to edit the protocol BC-FBp to implement all-to-all multibit broadcasts, mean-
ing we can broadcast k multibit messages from k not-necessarily distinct parties in a single
broadcast. The edited protocol leaks a fraction p of a bit in total. While this transformation
is not essential to compile MPC protocols to topology-hiding ones, it will cut down the round
complexity by a factor of n times the size of a message.

First observe that BC-FBp actually works also to broadcast multiple bits. Instead of sending a
single bit during the random-walk protocol, it is enough that parties send vectors of ciphertexts.
That is, in each round parties send a vector [~b1, . . . , ~b`, u].

Now we show how to achieve an all-to-all broadcast. Assume each party Pi wants to broadcast
some k-bit message, (b1, . . . , bk). We consider a vector of length nk, where each of the n parties
is assigned to k slots for k bits of its message. Each of the vectors ~bi in the vector [~b1, . . . , ~b`, u]
described above will be of this form. Pi will use the slots from n(i− 1) to ni to communicate its
message. This means that Pi will have as input vector ~bi = (0, . . . , 0, b1, . . . , bk, 0, . . . , 0). Then,
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in the Aggregate Stage, the parties will input their input message into their corresponding slots
(by homomorphically OR’ing the received vector with its input message). At the end of the
protocol, each party will receive the output containing the broadcast message of each party Pj
in the slots n(j − 1) to nj.

Lemma 3. Protocol BC-FBp can be edited to an all-to-all multi-bit broadcast MultibitBCp, which
is secure against an adversary, who statically passively corrupts and adaptively crashes any
number of parties and leaks at most a fraction p of a bit. The round complexity of MultibitBCp
is the same as for BC-FBp.

Proof. This involves the following simple transformation of protocol BC-FBp. Note that BC-FBp
is already multibit; during the random-walk protocol, parties send around vectors of ciphertexts:
[~b, u] := [b1, . . . , b`, u]. In the transformed protocol we will substitute each ciphertext encrypting
a bit bi with a vector of ciphertexts of length m, containing encryptions of a vector of bits
~bi . That is, we now think of parties sending a vector of vectors [~b1, . . . , ~b`, u]. Technically, we
“flatten” these vectors, that is, the parties will send vectors of length m`+ 1 of ciphertexts.

Let us now explain the transformation. For an all-to-all broadcast, each party, Pi, wants to
broadcast some k-bit message, (b1, . . . , bk). Consider a vector of ciphertexts of length nk, where
each of the n parties is assigned to k slots for k bits of its message. Each of the vectors ~bi in the
vector [~b1, . . . , ~b`, u] described above will be of this form. Pi will use the slots from n(i − 1) to
ni to communicate its message.

We now have a look at the Aggregate Stage in the transformed protocol MultibitBCp.

– Every party Pi who wants to send the k bit message (b1, . . . , bk) prepares its input vector
~bi = (0, . . . , 0, b1, . . . , bk, 0, . . . , 0) by placing the bits b1, . . . , bk in positions from n(i− 1) to
ni.

– At the beginning of the Aggregate Stage, the recipient Po with the input vector ~bo sends the
ciphertext [~bo ∨ uo,~1, . . . ,~1, uo]pk(1)

i→1
to its first neighbor. All other ciphertexts to all other

neighbors j are just [~1, . . . ,~1, 1]
pk(1)
i→j

7.

Every other party Pi starts the protocol with sending the ciphertext tuple [~1, . . . ,~1, 1]
pk(1)
i→j

to every neighbor j.
– Upon receiving a ciphertext at round r from a neighbor j, [~b1, . . . ,~b`, u]

pk
(t)
j→i

, party Pi takes

its input vector ~bi and homomorphically OR’s the vector (~bi ∨ ui, . . . , ~bi ∨ ui, ui) containing
` copies of the vector ~bi ∨ ui to the ciphertext. The result is sent along the walk.

The rest of the protocol MultibitBCp proceeds analogously to BC-FBp.
A quick check of correctness tells us that when a message is not made unhappy, and starts

with 0’s in the appropriate places, every party’s broadcast message eventually gets OR’d in a
different spot in the message vector, and so every party will get that broadcast.

A quick check of soundness tells us that the simulator works just as before: it simulates with
the encrypted output (all nk bits) when there was no abort, and with a query to the leakage
function if there was one. ut

B.2 Sequential Execution Without Aggregated Leakage

We show how to construct a protocol, which implements any number of sequential executions
of the protocol MultibitBCp, while preserving the leakage of a fraction p of a bit in total. The
construction makes non-black-box use of the unhappy bits used in MultibitBCp. The idea is
simply to preserve the state of the unhappy bits between sequential executions. That is, once
some party sees a crash, it will cause all subsequent executions to abort.

7 We are abusing notation: ~bo ∨ uo means that we OR ui with every coordinate in ~b.
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Lemma 4. There exists a protocol, which implements any number k of executions of the protocol
MultibitBCp, is secure against an adversary, who statically passively corrupts and adaptively
crashes any number of parties and leaks at most a fraction p of a bit in total. The complexity
of the constructed protocol is k times the complexity of MultibitBCp.

Proof. The construction makes non-black-box use of the unhappy bits used in MultibitBCp. The
idea is simply to preserve the state of the unhappy bits between sequential executions. That is,
once some party sees a crash, it will cause all subsequent executions to abort.

Correctness and complexity of the above construction are trivial, since it simply executes
the protocol MultibitBCp k times.

We now claim that any leakage happens only in the one execution of protocol MultibitBCp,
in which the first crash occurs. Once we show this, it is easy to see that the constructed protocol
executing MultibitBCp k times leaks at most a fraction p of a bit.

By Theorem 3, any execution without crashes causes no leakage (it an be easily simulated
as in the setting with only passive corruptions and no fail-stop adversary). Further, assume
that any party Pc crashes before BC-FBp starts. Let NG(a) be all of Pa’s neighbors; all of them
will have their unhappy bit set to 1. Because of the correctness of the random-walk protocol
embedded within BC-FBp, the random walk will hit every node in the connected component,
and so is guaranteed to visit a node in NG(a). Therefore, every walk will become a dummy
walk, which is easily simulated. ut

Remark 1. We note that the above technique to sequentially execute protocols which leak p
bits and are secure with abort can be applied to a more general class of protocols (in particular,
not only to our topology-hiding broadcast). The idea is that if a protocol satisfies the property
that any abort before it begins implies that the protocol does not leak any information, then it
can be executed sequentially leaking at most p bits.

B.3 Topology-Hiding Computation

We are now ready to compile any MPC protocol (secure against an adversary, who statically
passively corrupts and adaptively crashes any number of parties) into one that is topology-hiding
and leaks at most a fraction p of a bit.

To do this, it is enough to do a standard transformation using public key infrastructure.
Let ΠMPC be a protocol that runs in M rounds. First, the parties use one all-to-all multi-bit
topology-hiding broadcast protocol to send each public key to every other party. Then, each
round of ΠMPC is simulated: the parties run n all-to-all multi-bit topology hiding broadcasts si-
multaneously to send the messages sent in that round encrypted under the corresponding public
keys. After the broadcasts, each party can use their secret key to decrypt their corresponding
messages.

Theorem 6. Assume PKCR exists. Then, we can compile any MPC protocol ΠMPC that runs
in M rounds into a topology-hiding protocol with leakage function LFBp, that runs in MR + 1
rounds, where R is the round complexity of BC-FBp. 8

Proof. Recall the generic transformation for taking UC-secure topology-hiding broadcast and
compiling it into UC-secure topology-hiding MPC using a public key infrastructure. Every
MPC protocol with M rounds, ΠMPC , has at each round each party sending possibly different
messages to every other party. This is a total of O(n2) messages sent at each round, but we can
simulate this with n separate multi-bit broadcasts.

To transform ΠMPC into a topology-hiding protocol in the fail-stop model, given a multi-bit
topology-hiding broadcast, we do the following:

8 In particular, the complexity of BC-FBp is n ·ρ ·2T, where κ is the security parameter, τ = log(n)+κ, T = 8n3τ
is the length of a walk and ρ = τ/(p′ − 2−τ ) is the number of repetitions of a phase (with p′ = 1/b1/pc).
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– Setup phase. The parties use one multi-bit topology-hiding broadcast to give their public
key to every other party.

– Each round of ΠMPC . For each party Pi that needs to send a message of k bits to party
Pj , Pi encrypts that message under Pj ’s public key. Then, each party Pi broadcasts the
n− 1 messages it would send in that round of ΠMPC , one for each j 6= i, encrypted under
the appropriate public keys. That is, Pi is the source for one multi-bit broadcast. All these
multi-bit broadcasts are simultaneously executed via an all-to-all multi-bit broadcast, where
each party broadcast a message of size (n− 1)k times.
After the broadcasts, each node can use their secret key to decrypt the messages that were
for them and continue with the protocol.

– At the end of the protocol, each party now has the output it would have received from
running ΠMPC , and can compute its respective output.
First, this is a correct construction. We will prove this by inducting on the rounds of ΠMPC .

To start, all nodes have all information they would have had at the beginning of ΠMPC as well
as public keys for all other parties and their own secret key. Assume that the graph has just
simulated round r−1 of ΠMPC and each party has the information it would have had at the end
of round r−1 of ΠMPC (as well as the public keys etc). At the end of the r’th simulated round,
each party Pi gets encryptions of messages sent from every other party Pj encrypted under Pi’s
public key. These messages were all computed correctly according to ΠMPC because all other
parties had the required information by the inductive hypothesis. Pi can then decrypt those
messages to get the information it needs to run the next round. So, by the end of simulating all
rounds of ΠMPC , each party has the information it needs to complete the protocol and get its
respective output.

Security of this construction (and, in particular, the fact that it only leaks a fraction p of a
bit) follows directly from Lemma 3 and Lemma 4. ut

We can now conclude that any MPC functionality can be implemented by a topology-hiding
protocol. Since PKCR is implied by either DDH, QR or LWE, we get the following theorem as
a corollary.
Theorem 1. If DDH, QR or LWE is hard, then any MPC functionality F can be realized by
a topology-hiding protocol which is secure against an adversary that does any number of static
passive corruptions and adaptive crashes, leaking an arbitrarily small fraction p of a bit. The
round and communication complexity is polynomial in κ and 1/p.

Proof. Because every poly-time computable functionality F has an MPC protocol [CLOS02],
we get that Theorem 6 implies we can get topology-hiding computation. The round and com-
munication complexity is implied by Theorem 6 and the complexity of MultibitBCp. ut

C Deeply Fully-Homomorphic Public-Key Encryption

In this section we present the formal definition of deeply fully-homomorphic public-key encryp-
tion from Section 5.1.

Our protocol requires a PKE scheme E where (a) one can add and remove layers of encryp-
tion, while (b) one can homomorphically compute any function on encrypted bits (independent
of the number of layers). This will be captured by three additional algorithms: AddLayerr,
DelLayerr, and HomOpr, operating on ciphertexts with r layers of encryption (we will call such
ciphertexts level-r ciphertexts). A level-r ciphertext is encrypted under a level-r public key (we
assume that each level can have different key space).

Definition 2. A deeply fully-homomorphic public-key encryption (DFH-PKE) scheme is a
PKE scheme with additional algorithms AddLayerr, DelLayerr, and HomOpr. We define addi-
tional public-key spaces PKr and ciphertext spaces Cr, for public keys and ciphertexts on level r.
We require that PK1 = PK and C1 = C. Let F be the family of efficiently computable functions.
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– The algorithm AddLayerr : C∗r×PKr×SK → C∗r+1×PKr+1 takes as input a level-r ciphertext
JmKpk, the corresponding level-r public key pk, and a new secret key sk. It outputs a level-
(r + 1) ciphertext and the level-(r + 1) public key, under which it is encrypted.

– The algorithm DelLayerr : C∗r+1×PKr+1×SK → C∗r×PKr deletes a layer from a level-(r+1)
ciphertext.

– The algorithm HomOpr : C∗r × PKr × F → Cr takes as input some k level-r ciphertexts en-
crypted under the same level-r public key, the corresponding public key, and a k-ary function
f . It outputs a level-r ciphertext that contains f of the encrypted messages.

For convenience, it will be easy to describe the security of our enhanced encryption scheme
with the help of an algorithm Leveled-Encryptr, which takes as input a vector of plain messages
and a level-r public key, and outputs a vector of level-r ciphertexts9.

Definition 3. For a DFH-PKE scheme, we additionally define the algorithm Leveled-Encryptr :
M∗ × PKr → C∗r × PKr that outputs the level-r encryptions of the messages ~m and the corre-
sponding level-r public key.

Intuitively, we will require that from the output of AddLayerr (DelLayerr) one cannot obtain
any information on the underlying layers of encryption. That is, that the output of AddLayerr
(DelLayerr) is indistinguishable from a level-(r+ 1) (level-r) encryption of the message. We will
also require that the output of HomOpr is indistinguishable from a level-r encryption of the
output of the functions applied to the messages.

Definition 4. We require that a DFH-PKE scheme satisfies the following properties:

Aggregate Soundness. For every r, every vector of messages ~m and every efficiently com-
putable pair of level-r public keys pk1 and pk2,{

AddLayerr(J~mKpk1 ,pk1, sk;U∗) : (pk, sk)← KeyGen(1κ;U∗)
}

≈c{
(Leveled-Encryptr+1(~m,pk′2;U∗),pk′2) : (pk, sk)← KeyGen(1κ;U∗),

(J0Kpk′2 ,pk′2)← AddLayerr(J0Kpk2 ,pk2, sk;U∗)

}
Decrypt Soundness. For every r, every vector ~m and every efficiently computable level-r

public key pk1,{
DelLayerr(J~mKpk,pk, sk;U∗) : (pk, sk)← KeyGen(1κ;U∗),

(J0Kpk,pk)← AddLayerr(J0Kpk1 ,pk1, sk;U∗)

}
≈c

{(Leveled-Encryptr(~m,pk1;U∗),pk1)}

Full-Homomorphism. For every vector of messages ~m ∈ M∗, every level-r public key pk,
every vector of ciphertexts ~c ∈ C∗ and every function f ∈ F where Leveled-Encryptr(~m,pk) =
~c,

{(~m,~c,pk, f, Leveled-Encryptr(f(~m),pk;U∗))}

≈c

{(~m,~c,pk, f,HomOpr(~c,pk, f ;U∗))}
9 This algorithm can be obtained by keeping an encryption of 0 and 1 as part of the leveled public key and

rerandomizing the ciphertext using HomOpr.
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Note that AddLayerr and DelLayerr produce both the level-r encrypted messages and the
level-r public key. In the case where we only need the public key, we will just call the procedure
AddLayerr(J0Kpk,pk, sk), since the encrypted message does not matter for producing a new
public key — the same applies for DelLayerr.

Also note that one can create a level-r public key generating r level-1 key pairs (pki, ski)←
KeyGen(1κ) and using AddLayer to add the public keys one by one. Furthermore, with all secret
keys (sk1, . . . , skr) used in the creation of some level-r public key pk, we can define a combined
level-r secret key sk = (sk1, . . . , skr), which we can use to decrypt a level-r ciphertext by calling
DelLayer r times.

C.1 Instantiation of DFH-PKE from FHE
We show how to instantiate DFH-PKE from FHE. As required from the DFH-PKE scheme, the
level-1 public key space and ciphertext space are the FHE public key space and FHE ciphertext
space respectively, i.e., PK1 = PK and C1 = C. For r > 1, a level-r public key and ciphertext
spaces are PKr = PK × C and Cr = C, respectively.
Notation. We denote by FHE.Encrypt(m, pk) the FHE encryption algorithm that takes message
m and encrypts under public key pk. In the same way, the FHE decryption algorithm is denoted
by FHE.Decrypt. The FHE evaluation algorithm is defined as

FHE.HomOp([m1, . . . ,mn]pk, pk, f) := [f(m1, . . . ,mn)]pk.

It gets as input a vector of encrypted messages under pk, the public key pk and the function to
evaluate, and it returns the output of f applied to the messages.

In the following we define the algorithms to add and remove layers:

Let pk be the corresponding public key of sk.
c′i ← FHE.Encrypt(ci, pk).
pk′ ← (pk,FHE.Encrypt(pk, pk)).
return ((c′1, . . . , c′n),pk′).

Algorithm AddLayerr((c1, . . . , cn),pk, sk)

Parse pk′ = (pk, [pk]pk).
pk← FHE.Decrypt([pk]pk, sk).
ci ← FHE.Decrypt(c′i, sk).
return ((c1, . . . , cn),pk).

Algorithm DelLayerr((c′1, . . . , c′n),pk′, sk)

Notice the recursive nature of leveling; to make notation less cumbersome, let pkr =
(pkr, [pkr−1, [. . . [pk1]pk2 . . . ]pkr−1 ]pkr), and JmKpkr denotes the leveled ciphertext, i.e., JmKpkr =
[[. . . [m]pk1 . . . ]pkr−1 ]pkr . Hence, it is easy to see that the two algorithms above accomplish the
following:

AddLayerr(J~mKpkr ,pkr, skr+1) = (J~mKpkr+1 ,pkr+1)
and

DelLayerr(J~mKpkr+1 ,pkr+1, skr) = (J~mKpkr ,pkr)

In the following, we show how to apply any function f on any vector of level-r ciphertexts.
It is clear that if the ciphertexts are level-1 ciphertexts, we can apply f using FHE directly. If
the ciphertexts are level-r ciphertexts for r > 1, we FHE evaluate the ciphertexts and public
key with a recursive function call on the previous level. More concretely, we use the following
recursive algorithm to apply f to any vector of level-r ciphertexts:
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if r = 1 then
Parse pk = pk.
return FHE.HomOp((c1, . . . , cn), pk, f).

end if
Parse pk = (pk, [pkr−1]pk), ci = [c′i]pk.
Let f ′(·, ·) := HomOpr−1(·, ·, f).
return FHE.HomOp(([(c′1, . . . , c′n)]pk, [pkr−1]pk), pk, f ′).

Algorithm HomOpr((c1, . . . , cn),pk, f)

Lemma 5. For any r, algorithm HomOpr is correct on leveled ciphertexts.

Proof. We want to show that for a vector of level-r ciphertexts ~c = J~mKpk , HomOpr(c,pk, f) =
Jf(~m)Kpk . We will prove this via induction on r.

For the base case, consider r = 1. Here we go into the if statement, and the algorithm returns
FHE.HomOp([~m]pk, pk, f) = [f(~m)]pk by the correctness of the FHE scheme.

Now, assume that HomOpr−1(J~mKpkr−1 ,pkr−1, f) = Jf(~m)Kpkr−1 for all messages ~m en-
crypted under r − 1 levels of keys. Calling HomOpr on J~mKpkr results in returning

FHE.HomOp((J~mKpkr , [pkr−1]pkr), pkr,HomOpr−1(·, ·, f))
= [HomOpr−1(J~mKpkr−1 ,pkr−1, f)]pkr

= Jf(~m)Kpkr

by correctness of the FHE homomorphic evaluation.

We are also able to encrypt in a leveled way by exploiting the fully-homomorphic properties
of the scheme, using the FHE.HomOp algorithm to apply encryption.

if r = 1 then
Parse pk = pk
return (FHE.Encrypt(mi, pk))i

end if
Parse pk = (pk, [pkr−1]pk).
Let [~m]pk = (FHE.Encrypt(mi, pk))i.
return FHE.HomOp(([~m]pk, [pkr−1]pk), pk, Leveled-Encryptr−1)

Algorithm Leveled-Encryptr(~m,pk)

Finally, we need to prove that adding a fresh layer is equivalent to looking like a fresh
random encryption.

Lemma 6. Leveled-Encryptr(~m,pkr) = J~mKpkr .

Proof. We will prove this by induction on r. For r = 1, it follows from the base case that

Leveled-Encrypt1(~m,pk1) = FHE.Encrypt(~m, pk1) = J~mKpk1 .

Now, assume that for r − 1, Leveled-Encryptr−1(~m,pkr−1) = J~mKpkr−1 . This means that
when we call Leveled-Encryptr(~m,pkr), we return

FHE.HomOp([~m]pkr , [pkr−1]pkr , pkr, Leveled-Encryptr−1) = [J~mKpkr−1 ]pkr = J~mKpkr

as desired.

Lemma 7. The instantiation of DFH-PKE from FHE presented above satisfies the properties
Aggregate Soundness, Decrypt Soundness and Full-Homomorphism, presented in Definition 4.
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Proof. Aggregate Soundness. The algorithm AddLayer returns a tuple (J~mKpk ,pk′), where
~m is a vector of messages, and pk′ = (pk,FHE.Encrypt(pk, pk)) is a pair containing a fresh
public key pk and an encryption of a level-r key pk under the fresh public key pk. Observe that
this is exactly a level-(r + 1) key.

The tuple that consists of (Leveled-Encryptr+1(~m,pk1;U∗),pk1), where pk1 is a level-(r+1)
public key obtained from adding a fresh layer to a level-r public key, has the same distribution:
the first part of both tuples contain fresh FHE encryptions of level-r ciphertexts, and the second
part is a level-(r + 1) public key.

Decrypt Soundness. This property is trivially achieved given the correctness of the FHE
decryption algorithm and Leveled-Encryptr.

Full-Homomorphism. The Leveled-Encryptr algorithm returns a level-r encryption of f(~m)
which is the result of applying FHE homomorphic operations on a level-r ciphertext. The
algorithm HomOpr also returns a level-r ciphertext output by the FHE homomorphic operation.

D Topology-Hiding Computation from DFH-PKE

In this section, we present a detailed description of protocol DFH-THC from Section 5.2.
We will use DFH-PKE to alter the RandomWalkPhase protocol (and by extension we can

alter ProbabilisticRandomWalkPhasep). Then, executing protocols BC-OB and BC-FBp that leak
one bit and a fraction of a bit respectively will be able to evaluate any poly-time function
instead, while still leaking the same amount of information as a broadcast using these random
walk protocols. The concept is simple. During the Aggregate Stage, parties will add a leveled
encryption of their input and identifying information to a vector of ciphertexts, while adding a
layer — we will not need sequential id’s if each party knows where their input should go in the
function. Then, at the end of the Aggregate Stage, nodes homomorphically evaluate f ′, which
is the composition of a parsing function, to get one of each input in the right place, and f , to
evaluate the function on the parsed inputs. The result is a leveled ciphertext of the output of
f . This ciphertext is un-layered in the Decrypt Stage so that by the end, the relevant parties
get the output.

For completeness, we give a detailed description of the modified protocol RandomWalkPhase
leaking one bit, which we call DFH-RandomWalkPhase:

Initialization Stage. Each party Pi has its own input bit bi and unhappiness bit ui. Each party
Pi knows the function f on n variables that the graph wants to compute, and generates T ·di
keypairs and T − 1 permutations on di elements (di is the number of neighbors for party
i). Pi also generates a unique ID (or uses a given sequential or other ID) pi. If party Pi
witnessed an abort from the last phase, it becomes unhappy, setting its unhappy bit ui = 1.

Aggregate Stage. Round 1. Each party Pi sends to each neighbor Pj a vector of level-1
ciphertexts under pk(1)

i→j containing the input bit bi, id pi, unhappy bit ui and a bit vi
indicating whether the walk is dummy or not.
If Pi is the party that gets the output in that phase, i.e., Pi = Po, then it sends to the first
neighbor an encryption of bi, pi, ui and a bit vi = 0 indicating that the walk should not be
dummy. To all other neighbors, vi = 1. In the case where Pi 6= Po, vi = 1 as well.
Round r ∈ [2, T ]. Let k = π

(r)
i (j). Upon receiving a vector of level-(r − 1) ciphertexts from

Pj . Party Pi uses sk(r)
i→k to add a fresh layer with AddLayer to the vector of ciphertexts. The

function AddLayer will return the vector ~c of level-r ciphertexts with the corresponding level-
r public key pk. Then, Pi will encrypt its own input, id and unhappybit via Leveled-Encrypt
under pk and appends these ciphertexts to ~c. It then sends to Pk the level-r public key and
all the level-r ciphertexts.
If no vector of ciphertexts was received from Pj (i.e. Pj aborted), Pi generates a fresh level-r
public key pk and secret key sk. It then generates a vector of level-r ciphertexts containing
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the bit 1 using Leveled-Encrypt under pk. The size of this vector corresponds to the size of
the vector containing the dummy bit, r input bits, r ids, and r unhappy bits.

Evaluation. We are now at the last step in the walk. If Pi received an encrypted vector of
level-T ciphertexts from Pj , it evaluates the vector using HomOpT on the function f ′ which
does the following: if the dummy bit is 1 or any unhappy bit set to 1, the function evaluates
to ⊥. Otherwise, it arranges the inputs by ids and evaluates f on the arranged inputs.
That is, it evaluates f ◦ parse, where parse((mi1 , pi1), . . . , (miT , piT )) = (m1, . . . ,mn). More
concretely, for the vector of ciphertexts ~c and level-T public key pk received from Pj , Pi
evaluates ĉ← HomOp(~c,pk, f ′), and sends ĉ to Pj .
If Pi did not receive a message from Pj , or ui has been set to 1, Pi sends a ciphertext contain-
ing ⊥: it generates a fresh level-T public key pk and secret key sk, and uses Leveled-Encrypt
under pk to send to Pj a level-T ciphertext containing ⊥.

Decrypt Stage. Round r ∈ [T, 2] If Pi receives a level-r ciphertext c from Pj , party Pi will
delete a layer using the secret key sk(r)

i→j that was used to add a layer of encryption at round
r of the Aggregate Stage. Otherwise, it uses Leveled-Encrypt to encrypt the message ⊥ under
the level-(r − 1) public key that was received in round r during the Aggregate Stage.

Output. If Pi is the party that gets the output in that phase, i.e., Pi = Po and it receives a
level-1 ciphertext c from its first neighbour, Pi computes the output message using Decrypt
using the secret key sk(1)

i→1. In any other case, Pi outputs ⊥. Pi also outputs its unhappy bit
ui.

Now, DFH-THC runs the protocol DFH-RandomWalkPhase n times, similarly to BC-OB.

Each party Pi sets outputi = 1 and ui = 0.
for o from 1 to n do

Parties jointly execute
(
(inputtempi , utempi )Pi∈P

)
=

DFH-RandomWalkPhase(T, Po, (di, inputi, ui)Pi∈P , f).
Party Po sets outputo = inputtempo .
Each party Pi sets ui = utempi ∨ ui.

end for
Each party Pi outputs outputi if outputi 6= ⊥.

Protocol DFH-THC(T, (di, inputi)Pi∈P , f)

Theorem 4. For security parameter κ, τ = log(n) + κ, T = 8n3τ , and ρ = τ/(p′ − 2−τ ),
where p′ = 1/b1/pc, the protocol DFH-THC(T, ρ, (di, inputi)Pi∈P)) topology-hidingly evaluates
any poly-time function f , FLFBpinfo ||f in the Fnet hybrid-world.

Proof (Sketch). This proof will look almost exactly like the proof of Theorem 3. The simulator
and its use of the leakage oracle will behave in nearly the same manner as before.

– During the Aggregate Stage, the simulator sends leveled encryptions of 1 of the appropriate
size with the appropriate number of layers.

– During the Decrypt Stage, the simulator sends the output encrypted with the appropriate
leveled keys.

Because Leveled-Encryptr is able to produce a distribution of ciphertexts that looks identical to
AddLayerr, and by semantic security of the FHE scheme, no party can tell what other public
keys were used except the most recently added one, the simulated ciphertexts and public keys
are computationally indistinguishable from those in the real walk.

It is also worth pointing out that as long as the FHE scheme only incurs additive blowup
in error and size, and T = poly(κ), the ciphertexts being passed around are only poly(κ) in
size. ut
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